Journal of Chemical Crystallography

, Volume 41, Issue 11, pp 1649–1662 | Cite as

Structural Systematics of the Anhydrous 1:1 Proton-Transfer Compounds of 3,5-Dinitrosalicylic Acid with Aniline and Monosubstituted Anilines

  • Graham Smith
  • Urs D. Wermuth
  • Peter C. Healy
  • Jonathan M. White
Original Paper

Abstract

The crystal structures of the proton-transfer compounds of 3,5-dinitrosalicylic acid (DNSA) with a series of aniline-type Lewis bases (aniline, 2-hydroxyaniline, 2-methoxyaniline, 3-methoxyaniline, 4-fluoroaniline, 4-chloroaniline and 2-aminoaniline) have been determined and their hydrogen-bonding systems analysed. All are anhydrous 1:1 salts: [(C6H8N)+(C7H3N2O7)] (1), [(C6H8NO)+(C7H3N2O7)] (2), [(C7H10NO)+(C7H3N2O7)] (3), [(C7H10NO)+(C7H3N2O7)] (4), [(C6H7FN)+(C7H3N2O7)] (5), [(C6H7ClN)+(C7H3N2O7)] (6), and [(C6H9N2)+(C7H3N2O7)] (7), respectively. Crystals of 1 and 6 are triclinic, space group P-1 while the remainder are monoclinic with space group either P21/n (2, 4, 5 and 7) or P21 (3). Unit cell dimensions and contents are: for 1, a = 7.2027(17), b = 7.5699(17), c = 12.9615(16) Å, α = 84.464(14), β = 86.387(15), γ = 75.580(14)°, Z = 2; for 2, a = 7.407(3), b = 6.987(3), c = 27.653(11) Å, β = 94.906(7)°, Z = 4; for 3, a = 8.2816(18), b = 23.151(6), c = 3.9338(10) Å, β = 95.255(19)°, Z = 2; for 4, a = 11.209(2), b = 8.7858(19), c = 15.171(3) Å, β = 93.717(4)°, Z = 4; for 5, a = 26.377(3), b = 10.1602(12), c = 5.1384(10) Å, β = 91.996(13)°, Z = 4; for 6, a = 11.217(3), b = 14.156(5), c = 4.860(3) Å, α = 99.10(4), β = 96.99(4), γ = 76.35(2)°, Z = 2; for 7, a = 12.830(4), b = 8.145(3), c = 14.302(4) Å, β = 102.631(6)°, Z = 4. In all compounds at least one primary linear intermolecular N+–H⋯O(carboxyl) hydrogen-bonding interaction is present which, together with secondary hydrogen bonding results in the formation of mostly two-dimensional network structures, exceptions being with compounds 4 and 5 (one-dimensional) and compound 6 (three-dimensional). In only two cases (compounds 1 and 4), are weak cation–anion or cation–cation π–π interactions found while weak aromatic C–H⋯O interactions are insignificant. The study shows that all compounds fit the previously formulated classification scheme for primary and secondary interactive modes for proton-transfer compounds of 3,5-dinitrosalicylic acid but there are some unusual variants.

Graphical Abstract

The crystal structure determinations of the anhydrous 1:1 proton-transfer compounds of 3,5-dinitrosalicylic acid with aniline and a set of six monosubstituted anilines (2-hydroxy-, 2-methoxy-, 3-methoxy-, 4-fluoro-, 4-chloro- and 2-aminoaniline) have allowed the hydrogen-bonding systematics to be examined.

Keywords

Hydrogen bonding Proton-transfer compounds 3,5-Dinitrosalicylic acid Anilines 

Notes

Acknowledgments

The authors acknowledge financial support from the Faculty of Science and Technology, Queensland University of Technology, the School of Biomolecular and Physical Sciences, Griffith University and the School of Chemistry, University of Melbourne.

References

  1. 1.
    Smith G, Wermuth UD, Bott RC, Healy PC, White JM (2002) Aust J Chem 55:349CrossRefGoogle Scholar
  2. 2.
    Smith G, Wermuth UD, Healy PC, White JM (2002) Aust J Chem 56:707CrossRefGoogle Scholar
  3. 3.
    Smith G, Wermuth UD, Healy PC, White JM (2007) Aust J Chem 60:264CrossRefGoogle Scholar
  4. 4.
    Kumar VSS, Kuduva SS, Desiraju GR (2002) Acta Crystallogr E 58:o865CrossRefGoogle Scholar
  5. 5.
    Smith G, Baldry KE, Byriel KA, Kennard CHL (1997) Aust J Chem 50:727CrossRefGoogle Scholar
  6. 6.
    Smith G, Coyne MG, White JM (2000) Aust J Chem 53:203CrossRefGoogle Scholar
  7. 7.
    Bott RC, Smith G, Wermuth UD, Dwyer NC (2000) Aust J Chem 53:767CrossRefGoogle Scholar
  8. 8.
    Kumar VSS, Nangia A, Katz AK, Carrell HL (2002) Cryst Growth Des 2:313CrossRefGoogle Scholar
  9. 9.
    Smith G, Lynch DE, Byriel KA, Kennard CHL (1995) Aust J Chem 48:1133CrossRefGoogle Scholar
  10. 10.
    Kumar VSS, Kuduva SS, Desiraju GR (1999) J Chem Soc Perkin Trans 2:1069Google Scholar
  11. 11.
    Smith G, Wermuth UD, White JM (2002) Acta Crystallogr E 58:o1315CrossRefGoogle Scholar
  12. 12.
    Smith G, Wermuth UD, Healy PC, White JM (2006) Aust J Chem 59:320CrossRefGoogle Scholar
  13. 13.
    Smith G, Wermuth UD, Young DJ, Healy PC (2007) Acta Crystallogr E 63:o2517CrossRefGoogle Scholar
  14. 14.
    Smith G, Wermuth UD, Healy PC (2006) Acta Crystallogr E 62:o610CrossRefGoogle Scholar
  15. 15.
    Smith G, Wermuth UD, White JM (2006) Acta Crystallogr C 62:o402CrossRefGoogle Scholar
  16. 16.
    Etter MC, Adsmond D (1990) J Chem Soc Chem Commun, 589Google Scholar
  17. 17.
    Etter MC, Frankenbach GM (1989) Materials 1:10Google Scholar
  18. 18.
    Issa YM, Hindawey AM, Issa RM, Nassar AMG (1980) Rev Roum Chim 25:1535Google Scholar
  19. 19.
    Hindawey AM, Nassar AMG, Issa RM, Issa YM (1980) Ind J Chem A 19:615–619Google Scholar
  20. 20.
    Issa YM, Hindawey AM, El-Kholy AE, Issa RM (1981) Gazz Chim Ital 111:27Google Scholar
  21. 21.
    Ng SW, Naumov P, Drew MGB, Wojciechowski G, Brzezinski B (2001) J Mol Struct 595:29CrossRefGoogle Scholar
  22. 22.
    Smith G, Wermuth UD, White JM (2005) Acta Crystallogr C 61:o464CrossRefGoogle Scholar
  23. 23.
    Etter MC, MacDonald JC, Bernstein J (1990) Acta Crystallogr B 46:256CrossRefGoogle Scholar
  24. 24.
    Smith G, Wermuth UD, Bott RC, White JM, Willis AC (2001) Aust J Chem 54:165CrossRefGoogle Scholar
  25. 25.
    Smith G, Wermuth UD, White JM (2001) Aust J Chem 54:171CrossRefGoogle Scholar
  26. 26.
    Song W-D, Guo X–X, Yu L (2007) Acta Crystallogr E 63:o1890CrossRefGoogle Scholar
  27. 27.
    Smith G, Lynch DE, Byriel KA, Kennard CHL (1996) Acta Crystallogr C 52:231CrossRefGoogle Scholar
  28. 28.
    Smith G, Wermuth UD, Healy PC (2002) Acta Crystallogr E 58:o845CrossRefGoogle Scholar
  29. 29.
    Smith G, Wermuth UD, White JM (2005) Acta Crystallogr E 62:o746CrossRefGoogle Scholar
  30. 30.
    Smith G, Bott RC, Wermuth UD (2001) Acta Crystallogr E 57:o640CrossRefGoogle Scholar
  31. 31.
    Mohamed HA, El-Medani SM, Ramadan RM (2005) J Ind Chem Soc 82:799Google Scholar
  32. 32.
    Subashini A, Samuel E, Muthiah PT, Bocelli G, Cantoni A (2007) Acta Crystallogr E 63:o4049CrossRefGoogle Scholar
  33. 33.
    Sheldrick GM (2008) Acta Crystallogr A 64:112CrossRefGoogle Scholar
  34. 34.
    Sheldrick GM (2008) SHELX97, program for crystal structure determination. University of GöttingenGoogle Scholar
  35. 35.
    Molecular Structure Corporation (1999) TeXsan for Windows. Version 1.06. MSC, The WoodlandsGoogle Scholar
  36. 36.
    Spek AL (2003) J Appl Crystallogr 36:7CrossRefGoogle Scholar
  37. 37.
    Spek AL (2003) PLATON: A crystallographic computing suiteGoogle Scholar
  38. 38.
    Allen FH, Raithby PR, Shields GP, Taylor R (1998) J Chem Soc Chem Commun, 1034Google Scholar
  39. 39.
    Sundaralingam M, Jensen LH (1965) Acta Crystallogr 18:1053CrossRefGoogle Scholar
  40. 40.
    Koman M, Martiska L, Valigura D, Glowiak T (2003) Acta Crystallogr E 59:o441CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Graham Smith
    • 1
  • Urs D. Wermuth
    • 2
  • Peter C. Healy
    • 2
  • Jonathan M. White
    • 3
  1. 1.Faculty of Science and TechnologyQueensland University of TechnologyBrisbaneAustralia
  2. 2.School of Biomolecular and Physical SciencesGriffith UniversityNathanAustralia
  3. 3.BIO-21, Molecular Science and BiotechnologyUniversity of MelbourneParkvilleAustralia

Personalised recommendations