Journal of Chemical Crystallography

, Volume 41, Issue 7, pp 944–951 | Cite as

Synthesis and Structural Characterization of (Z)-3-[(4-Chlorophenylamino) Methylene] Naphthalene-2(3H)-One: An Enol, Keto or Zwitterionic Tautomer?

  • T. K. Venkatachalam
  • Gregory K. Pierens
  • Paul V. Bernhardt
  • Luke Hammond
  • David C. Reutens
Original Paper


The structure of the title compound was determined using X-ray crystallography at both 173 and 293 K. The molecular structure and packing did not change significantly with temperature and a disordered structure was identified comprising a keto and enol tautomeric form. Analysis of the bond lengths in the vicinity of the C=O group suggested the keto form was predominantly in its zwitterionic form structure. 1H NMR spectroscopy showed the presence of a single compound in solution with two diagnostic doublets demonstrating the compound had an NH group next to a CH group resembling the zwitterionic form of the compound.

Graphical Abstract


Synthesis Schiff base NMR X-ray Crystallography Keto–enol tautomer 



This research was funded by a Program Grant from the National Health and Medical Research Council of Australia. We acknowledge the QNN for granting us access to the 900 Hz NMR spectrometer. The authors would like to thank Dr. Ekatarina Strounina for acquiring the 13C solid state NMR spectra.


  1. 1.
    Abraham RJ, Mobli M, Smith RJ (2003) Magn Reson Chem 41:26–36CrossRefGoogle Scholar
  2. 2.
    Aisri AM, Badahdah KO (2007) Molecules 12:1796–1804CrossRefGoogle Scholar
  3. 3.
    Alarcon SH, Olivieri AC, Sanz D, Claramunt RM, Elguero J (2004) J Mol Struct 705:1–9CrossRefGoogle Scholar
  4. 4.
    Antonov L, Fabian MF, Nedeltcheva D, Kamounah FS (2000) Perkin Trans 2:1173–1179CrossRefGoogle Scholar
  5. 5.
    Chaziefthimiou SD, Lazarou YG, Hadjoudis E, Dziembowska T, Marvridis IM (2006) J Phys Chem 110:23701–23709Google Scholar
  6. 6.
    Cohen MD, Flavian S, Leiserowitz L (1967) J Chem Soc B:329–334Google Scholar
  7. 7.
    Dominiak PM, Grech E, Barr G, Teat S, Mallinson P, Wpzniak W (2003) Chem Eur J 9:963–970CrossRefGoogle Scholar
  8. 8.
    Dudek GO, Holm RH (1962) J Am Chem Soc 84:2691–2695CrossRefGoogle Scholar
  9. 9.
    Dudek GO (1963) J Am Chem Soc 85:694–697CrossRefGoogle Scholar
  10. 10.
    Dudek GO, Volpp G (1963) J Am Chem Soc 85:2697–2702CrossRefGoogle Scholar
  11. 11.
    Dudek GO, Dudek EP (1964) J Am Chem Soc 86:4283–4284CrossRefGoogle Scholar
  12. 12.
    Dziembowska T (1998) Pol J Chem 72:193–209Google Scholar
  13. 13.
    Fernandez GJM, Rio-Portilla F, Quiroz-Garcia Q, Toscano RA, Salcedo R (2001) J Mol Struct 561:197–200CrossRefGoogle Scholar
  14. 14.
    Filarowski A, Koll A, Glowiak TJ (1997) J Chem Crystallogr 27:707CrossRefGoogle Scholar
  15. 15.
    Fita P, Luzina E, Dziembowska T, Kopec D, Piatkowski P, Radzewicz CZ, Grabowaska A (2005) Chem Phys Lett 416:305–310CrossRefGoogle Scholar
  16. 16.
    Hadjoudis E, Vitterakis M, Maustakali-Marrids I (1987) Tetrahedron 43:1345–1360CrossRefGoogle Scholar
  17. 17.
    Hadjoudis E, Dziembowska T, Rozwadowski Z (1999) J Photochem Photobiol A Chem 128:97–99CrossRefGoogle Scholar
  18. 18.
    Hadjoudis E, Rontoianni A, Ambroziak K, Dziembowska T, Marvridis IM (2004) J Photochem Photobiol A Chem 162:521–530CrossRefGoogle Scholar
  19. 19.
    Hadjoudis E, Chatziefthimiou SD, Mavridis IM (2009) Curr Org Chem 13:269–286CrossRefGoogle Scholar
  20. 20.
    Herzfeld R, Nagy P (2001) Curr Org Chem 5:373–394CrossRefGoogle Scholar
  21. 21.
    Kamiennski B, Schilf W, Dziembowska T, Rozwadowski Z, Chelmieniecka AS (2000) Solid State NMR 16:285–289CrossRefGoogle Scholar
  22. 22.
    Kholi RK, Bhattacharaya PK (1976) Bull Chem Soc Japan 49:2872–2874CrossRefGoogle Scholar
  23. 23.
    Ledbetter JW (1966) J Phys Chem 70:2245–2249CrossRefGoogle Scholar
  24. 24.
    Ogawa K, Kasahara Y, Ohtani Y, Harda J (1998) J Am Chem Soc 120:7107–7108CrossRefGoogle Scholar
  25. 25.
    Olivieri AC, Wilson RB, Paul IC, Curtin DY (1989) J Am Chem Soc 111:5525–5532CrossRefGoogle Scholar
  26. 26.
    Pavlovic G, Sosa JM, Topic DP, Leban I (2002) Acta Crystallogr E8:o317–o320Google Scholar
  27. 27.
    Rao PV, Rao CP, Wegelius EK, Rissanen K (2003) J Chem Crystallogr 33:139–147CrossRefGoogle Scholar
  28. 28.
    Rospenk M, Krol-Starzomska I, Filarowski A, Koll A (2003) Chem Phys 287:113–124CrossRefGoogle Scholar
  29. 29.
    Rozwadowski Z, Majewski E, Dziembowska T, Hansen PE (1999) J Chem Soc Perkin Trans 2:2809–2817Google Scholar
  30. 30.
    Sashidhara KV, Rosaiah JN, Narender T (2007) Tet Letts 48:1699–1702CrossRefGoogle Scholar
  31. 31.
    Salman SR, Lindon JC, Farrrant RD, Carpenter TA (1993) Magn Reson Chem 31:991–994CrossRefGoogle Scholar
  32. 32.
    Schilf W, Kamiennski B, Dziembowska T, Rozwadowski Z, Chelmieniecka AS (2000) J Mol Struct 552:33–37CrossRefGoogle Scholar
  33. 33.
    Schilf W, Kamienski B, Dziembowska T (2002) J Mol Struct 602:41–47CrossRefGoogle Scholar
  34. 34.
    Schilf W (2004) J Mol Struct 689:245–252CrossRefGoogle Scholar
  35. 35.
    Schilf W, Kazie B, Rozwadowski Z, Bleg B, Dziembowska T (2004) J Mol Struct 700:61–65CrossRefGoogle Scholar
  36. 36.
    Schilf W, Cmoch P, Chelmieniecka AS, Grech E (2009) J Mol Struct 921:34–37CrossRefGoogle Scholar
  37. 37.
    Schmidt J, Hoffmann A, Spiess HW, Sebastiani D (2006) J Phys Chem B 110:23204–23210CrossRefGoogle Scholar
  38. 38.
    Traven VF, Ivanov IV, Lebdev SV, Milevskii BG, Chibisova TA, Soloveeav NP, Polshakov VI, Kazeva ON, Alexandrov GC, Dyacenlo OA (2009) Mendeleev Commun 19:214–216CrossRefGoogle Scholar
  39. 39.
    Unver H, Zengin DM, Guven K (2000) J Chem Crystallogr 30:359–364CrossRefGoogle Scholar
  40. 40.
    Asgedom G, Sreedhara A, Kivikoski J, Valkonen J, Kolehmainen E, Rao CP (1996) Inorg Chem 35:5674–5683CrossRefGoogle Scholar
  41. 41.
    Bernhardt PV, Caldwell LM, Lovejoy DB, Richardson DR (2003) Acta Crystallogr C59:o629–o0633Google Scholar
  42. 42.
    Bullock JI, Ladd MF, Povey DC, Tajmir-Riahi HA (1979) Acta Crystallogr B35:2013–2020Google Scholar
  43. 43.
    Filarowski A, Koll A, Glowiak T, Majewski E, Dziembowska T (1998) Ber Bunsenges Phys Chem 102:393–397Google Scholar
  44. 44.
    Karabryik H, Guzel B, Aygun M, Boga G, Buyukgungor O (2007) Acta Crystallogr C63:o215–o218Google Scholar
  45. 45.
    Filarowski A, Kochel A, Kluba M, Kamounah FS (2008) J Phys Org Chem 21:939–944CrossRefGoogle Scholar
  46. 46.
    McPherson A (2003) Introduction to macromolecular crystallography, 1st edn. Wiley-Liss, HobokenGoogle Scholar
  47. 47.
    Rhodes G (1993) Crystallography made crystal clear. Academic Press, New YorkGoogle Scholar
  48. 48.
    Kutoglu A, Scheringer C (1983) Acta Crystallogr C C39:232CrossRefGoogle Scholar
  49. 49.
    Wu G, Wang G, Fu X, Zhu L (2003) Molecules 8:287CrossRefGoogle Scholar
  50. 50.
    Consorti CS, Suarez PAZ, de Souza RF, Burrow RA, Farrar DH, Lough AJ, Loh W, da Silva LHM, Dupont J (2005) J. Phys Chem B 109:4341CrossRefGoogle Scholar
  51. 51.
    Levitus M, Zepeda G, Dang H, Godinez C, Khunong TV, Schmieder K, Garcia-Garibay MA (2001) J Org Chem 66:3188CrossRefGoogle Scholar
  52. 52.
    Farrugia LJ (1999) J Appl Crystallogr 32:837–838CrossRefGoogle Scholar
  53. 53.
    Sheldrick GM (1998) SHELX97—programs for crystal structure analysis (release 97-2). Institut für Anorganische Chemie der Universität, Tamstrasse 4, D-3400, Göttingen, GermanyGoogle Scholar
  54. 54.
    Farrugia LJ (1997) J Appl Crystallogr 30:565–566CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • T. K. Venkatachalam
    • 1
    • 3
  • Gregory K. Pierens
    • 1
  • Paul V. Bernhardt
    • 2
  • Luke Hammond
    • 3
  • David C. Reutens
    • 1
    • 3
  1. 1.Centre for Advanced ImagingThe University of QueenslandBrisbaneAustralia
  2. 2.School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneAustralia
  3. 3.Queensland Brain Institute, The University of QueenslandBrisbaneAustralia

Personalised recommendations