Journal of Chemical Crystallography

, Volume 41, Issue 2, pp 167–174 | Cite as

Crystal Structure, Infrared Spectra and DFT Study of Benzyl 2,3-Anhydro-β-d-Ribopyranoside

  • Eva ScholtzováEmail author
  • Vratislav Langer
  • Ľubomír Smrčok
  • Miroslav Koóš
  • Vlasta Sasinková
  • Ján Hirsch


The crystal structure of benzyl 2,3-anhydro-β-d-ribopyranoside is orthorhombic, P212121, Z = 4. The pyranose ring adopts the E O conformation distorted considerably to the 5 H O direction. The molecules of the title compound are linked into infinite chains running along the a-axis by bifurcated O–H···O hydrogen bonds. Interaction energies of these hydrogen bonds are significantly different, ~−5.4 for the bond with the smaller and ~−1.1 kcal/mol for the bond with the larger O···O separation. The hydrogen-bond pattern is completed by the two weaker C–H···O intermolecular hydrogen bonds, aiming at the epoxy oxygen atom. IR vibrational spectrum was interpreted by means of comparison with the full list of vibrational modes predicted using DFT method in the solid state. While till 1495 cm−1 the individual bands can be reconciled with single calculated modes, the region below this limit is populated by heavily overlapped HCH, HCO, HOC, COC and HCC bending modes merged with few ν(CC) and ν(CO) modes. The respective “red” shifts of the positions of the ν(OH) bands correlate well with the size of the O···O separation.

Graphical Abstract

The crystal structure and the analysis of electronic structure and vibrational modes of an important precursor for preparation of model branched oligosaccharides related to xylan, arabinoxylan and 4-O-methylglucuronoxylan have been established and discussed.


Benzyl 2,3-anhydro-β-d-ribopyranoside DFT Hydrogen bonding IR vibrational spectra 



This study was partially supported by the Slovak Grant Agency VEGA under the contracts 2/0150/09 and 2/0128/08 and by the Slovak Research and Development Agency (contract no. APVV-0366-07).


  1. 1.
    Guthrie RD (1972) The carbohydrates: chemistry and biochemistry, Vol. IA. Academic Press, New York, pp. 423Google Scholar
  2. 2.
    Garegg PJ (1960) Acta Chem Scand 14:957CrossRefGoogle Scholar
  3. 3.
    Glendening ED, Reed AD, Carpenter JE, Weinhold F (1993) NBO. Version 3.1. Theoretical Chemistry Institute. University of Wisconsin, MadisonGoogle Scholar
  4. 4.
    Sheldrick GM (2008) Acta Cryst A64:112Google Scholar
  5. 5.
    Spek AL (2003) J Appl Cryst 36:7CrossRefGoogle Scholar
  6. 6.
    Brandendurg K (2000) Diamond. Version 3.1.e. Crystal Impact GbR, BonnGoogle Scholar
  7. 7.
    Kresse G, Hafner J (1993) Phys Rev B48:13115Google Scholar
  8. 8.
    Kresse G, Furthműller J (1996) Phys Rev B54:11169Google Scholar
  9. 9.
    Perdew JP, Wang Y (1992) Phys Rev B45:13244Google Scholar
  10. 10.
    Blöchl PE (1994) Phys Rev B50:17953Google Scholar
  11. 11.
    Kresse G, Joubert J (1999) Phys Rev B59:1758Google Scholar
  12. 12.
    Kresse G, Hafner J (1994) J Phys Condens Matt 6:8245CrossRefGoogle Scholar
  13. 13.
    Teter MP, Payne MC, Allan DC (1989) Phys Rev B40:12255Google Scholar
  14. 14.
    Bylander DM, Kleinman L, Lee S (1990) Phys Rev B42:1394Google Scholar
  15. 15.
    Hafner J (2003) J Mol Struct 651:3CrossRefGoogle Scholar
  16. 16.
    Portmann S, Luthi HP (2000) Chimia 54:766Google Scholar
  17. 17.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Rega N, Salvator P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko MW, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham T, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2001) Gaussian 98, Revision A.7. Gaussian, Inc., PittsburghGoogle Scholar
  18. 18.
    Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165CrossRefGoogle Scholar
  19. 19.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  20. 20.
    Weigend F, Häser M (1997) Theor Chem Acc 97:331Google Scholar
  21. 21.
    Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143CrossRefGoogle Scholar
  22. 22.
    Cremer D, Pople JA (1975) J Am Chem Soc 97:1354CrossRefGoogle Scholar
  23. 23.
    Köll P, Saak W, Pohl S, Steiner B, Koóš M (1994) Carbohydr Res 265:237CrossRefGoogle Scholar
  24. 24.
    James VJ, Stevens JD, Moore FH (1978) Acta Cryst B34:188Google Scholar
  25. 25.
    Grabowski S, Weber M, Buschmann J, Luger P (2008) Act Cryst B64:397CrossRefGoogle Scholar
  26. 26.
    Jeffrey GA, Mitra J (1983) Acta Cryst B39:469Google Scholar
  27. 27.
    Steiner T, Saenger W (1992) J Am Chem Soc 114:10146CrossRefGoogle Scholar
  28. 28.
    Libowitzky E (1999) Monatsh Chem 130:1047Google Scholar
  29. 29.
    Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York, p 222Google Scholar
  30. 30.
    Sládkovičová M, Smrčok Ľ, Mach P, Tunega D, Ramirez-Cuesta AJ (2008) J Mol Struct 874:108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Eva Scholtzová
    • 1
    Email author
  • Vratislav Langer
    • 2
  • Ľubomír Smrčok
    • 1
  • Miroslav Koóš
    • 3
  • Vlasta Sasinková
    • 3
  • Ján Hirsch
    • 3
  1. 1.Institute of Inorganic Chemistry, Slovak Academy of SciencesBratislavaSlovakia
  2. 2.Department of Chemical and Biological Engineering, Environmental Inorganic ChemistryChalmers University of TechnologyGothenburgSweden
  3. 3.Institute of Chemistry, Center of Excellence, Slovak Academy of SciencesBratislavaSlovakia

Personalised recommendations