Advertisement

Journal of Chemical Crystallography

, Volume 41, Issue 2, pp 98–104 | Cite as

Crystal Structures of 5,6,5′,6′-Tetramethoxy-1,1′-spirobisindane-3,3′-dione and two of its Fluorene Adducts

  • Mariolino Carta
  • James Raftery
  • Neil B. McKeownEmail author
ORIGINAL PAPER

Abstract

The structures of three spirobisindanes 1, 2a and 2b are reported. Each compound is a precursor to a Polymers of Intrinsic Microporosity (PIM) and is the component that provides the necessary site of contortion within the polymer. Of particular importance are the angles formed between the aromatic units around the spiro-centre as it may have direct relevance to the inefficiency of packing in the solid state packing, we think, induces microporosity in the final polymer. Compound 1 crystallized in the monoclinic P21/c space group with unit cell parameters a = 9.8000(5) Ǻ, b = 17.8710(9) Ǻ, c = 10.4100(5) Ǻ, β = 106.6280(10)°, V = 1746.92(15) A3, Z = 4, D = 1.401 Mg/m3. Compound 2a crystallized in the monoclinic P21/c space group with unit cell parameters a = 9.7460(13) Ǻ, b = 30.291(4) Ǻ, c = 8.6740(12) Ǻ, β = 97.111(3)°, 2541.0(6) A3, Z = 4, D = 1.319 Mg/m3. Compound 2b crystallized in the monoclinic P21/n space group with unit cell parameters a = 13.5670(9) Ǻ, b = 12.7930(8) Ǻ, c = 22.1960(14) Ǻ, β = 96.6630(10)°, V = 3826.4(4) A3, Z = 4, D = 1.265 Mg/m3.

Graphical Abstract

This paper describes the crystal structure of three spirobisindanes-based derivatives that serve as precursors Polymers of Intrinsic Microporosity and provide the important site of contortion within fused-ring structures.

Keywords

Microporous materials Polymers Spiro-compounds CH–π bonding 

References

  1. 1.
    Barton TJ, Bull LM, Klemperer WG, Loy DA, McEnaney B, Misono M, Monson PA, Pez G, Scherer GW, Vartuli JC, Yaghi OM (1999) Chem Mater 11:2633CrossRefGoogle Scholar
  2. 2.
    Jiang J-X, Su F, Wood CD, Campbell NL, Niu H, Dickinson C, Ganin AY, Rosseinsky MJ, Khimyak YZ, Cooper AI, Trewin A (2007) Angew Chem Int Ed 46:8574CrossRefGoogle Scholar
  3. 3.
    Mackintosh HJ, Budd PM, McKeown NB (2008) J Mater Chem 18:573CrossRefGoogle Scholar
  4. 4.
    Nagai K, Masuda T, Nakagawa T, Freeman BD, Pinnau I (2001) Prog Polym Sci 26:721CrossRefGoogle Scholar
  5. 5.
    Tsyurupa MP, Davankov VA (2002) React Funct Polym 53:193CrossRefGoogle Scholar
  6. 6.
    Webster OW, Gentry FP, Farlee RD, Smart BE (1992) Macromol Symp 54/55:477Google Scholar
  7. 7.
    Budd PM, Ghanem BS, Makhseed S, McKeown NB, Msayib KJ, Tattershall CE (2004) Chem Commun 230Google Scholar
  8. 8.
    Ghanem BS, Msayib KJ, McKeown NB, Harris KDM, Pan Z, Budd PM, Butler A, Selbie J, Book D, Walton A (2007) Chem Commun 67Google Scholar
  9. 9.
    McKeown NB, Budd PM, Msayib KJ, Ghanem BS, Kingston HJ, Tattershall CE, Makhseed S, Reynolds KJ, Fritsch D (2005) Chem Eur J 11:2610CrossRefGoogle Scholar
  10. 10.
    Budd PM, McKeown NB, Ghanem BS, Msayib KJ, Fritsch D, Starannikova L, Belov N, Sanfirova O, Yampol’skii YP, Shantarovich V (2008) J Membr Sci 325:851CrossRefGoogle Scholar
  11. 11.
    Carta M, Msayib KJ, Budd PM, McKeown NB (2008) Org Lett 10:2641CrossRefGoogle Scholar
  12. 12.
    Sheldrick GM (2008) Acta Crystallogr A A64:112CrossRefGoogle Scholar
  13. 13.
    Bjork JA, Brostrom ML, Whitcomb DR (1997) J Chem Crystallogr 27:223CrossRefGoogle Scholar
  14. 14.
    Shanmuga Sundara Raj S, Fun HK, Wu J, Tian YP, Xie FX, Shao ZH, Li SL (2000) Acta Crystallogr C 56(Pt 11):1321CrossRefGoogle Scholar
  15. 15.
    Aravindan PG, Selvanayagam S, Velmurugan D, Ravikumar K, Jayashankaran J, Raghunathan R (2004) Acta Crystallogr E E60:o2152CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mariolino Carta
    • 1
  • James Raftery
    • 2
  • Neil B. McKeown
    • 1
    Email author
  1. 1.School of ChemistryCardiff UniversityCardiffUK
  2. 2.Department of ChemistryUniversity of ManchesterManchesterUK

Personalised recommendations