Journal of Chemical Crystallography

, Volume 40, Issue 6, pp 557–560 | Cite as

Crystal Study of N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine

Communication

Abstract

The structure of N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (NPB) with two molecules in the asymmetric unit, was solved and refined to a final R factor of 0.0434. The compound crystallized in the triclinic crystal system, space group P − 1, Z = 2, V = 1597.0(3) Å3 with unit cell parameters a = 10.3077(10) Å, b = 11.3545(11) Å, c = 14.4778(14) Å, α = 82.339(2)°, β = 77.657(2)°, and γ = 75.526(2)°. The two molecules in the asymmetric unit differed in the orientation of their triarylamino groups. The biphenyl group in the central structure is coplanar, and the angle between the least-square planes of the two six-carbon rings of the biphenyl moiety is zero degree. The packing of the molecules in the lattice is mainly due to the naphthyl-to-naphthyl π–π interaction with a distance of 3.861 Å.

Graphical Abstract

The title compound, C44H32N2, crystallizes in the triclinic space group P − 1. The two molecules in the asymmetric unit differed in the orientation of their triarylamino groups. The biphenyl group in the central structure was nearly coplanar and the packing of the molecules in the lattice was mainly due to the naphthyl-to-naphthyl π–π interaction.

Keywords

OLED NPB Single-crystal Hole-transporting 

References

  1. 1.
    Tang CW, VanSlyke SA (1987) Appl Phys Lett 51:913CrossRefGoogle Scholar
  2. 2.
    Deng Z, Lee ST, Webb DP, Chan YC, Gambling WA (1999) Synth Met 107:107CrossRefGoogle Scholar
  3. 3.
    Avendano FM, Forsythe EW, Gao Y, Tang CW (1999) Synth Met 102:910CrossRefGoogle Scholar
  4. 4.
    Halls MD, Tripp CP, Schlegel HB (2001) Phys Chem Chem Phys 3:2131CrossRefGoogle Scholar
  5. 5.
    Seo JH, Kim CY, Kang SJ, Yoo KH, Whang CN, Moewes A, Chang GS (2007) J Chem Phys 126:064706CrossRefGoogle Scholar
  6. 6.
    Wang BC, Liao HR, Chang JC, Chen L, Yeh JT (2007) J Lumin 124:333CrossRefGoogle Scholar
  7. 7.
    Yamamoto T, Nishiyama M, Koie Y (1998) Tetrahedron Lett 39:2367CrossRefGoogle Scholar
  8. 8.
    Sheldrick GM (1995) SADABS. Siemens analytical X-ray instrument division, Madison, WIGoogle Scholar
  9. 9.
    Sheldrick GM (1990) SHELXS97, program for the crystal structure solution. University of Göttingen, GermanyGoogle Scholar
  10. 10.
    Sheldrick GM (1997) SHELXL97, program for the crystal structure refinement. University of Göttingen, GermanyGoogle Scholar
  11. 11.
    Sheldrick GM (1998) SHELXTL programs, version 5.1. Bruker AXS, Madison, WIGoogle Scholar
  12. 12.
    Lin BC, Cheng CP, Lao ZPM (2003) J Phys Chem A 107:5241CrossRefGoogle Scholar
  13. 13.
    Cailleau H, Baudour JL (1979) Acta Crystallogr B35:426Google Scholar
  14. 14.
    Sugiyama K, Yoshimura D, Miyamae T, Miyazaki T, Ishii H, Ou-Chi Y, Seki K (1998) J Appl Phys 83:4928CrossRefGoogle Scholar
  15. 15.
    Malagoli M, Brédas JL (2000) Chem Phys Lett 327:13CrossRefGoogle Scholar
  16. 16.
    Sobolev AN, Belsky VK, Romm IP, Chernikova YN, Guryanova EN (1985) Acta Crystallogr C41:967Google Scholar
  17. 17.
    Pauling L (1967) The nature of chemical bond. Cornell University Press, Ithaca, NYGoogle Scholar
  18. 18.
    Dance I, Scudder M (1996) Chem Eur J 2:481CrossRefGoogle Scholar
  19. 19.
    Dance I, Scudder M (1996) J Chem Soc Dalton Trans 3755Google Scholar
  20. 20.
    Scudder M, Dance I (1998) J Chem Soc Dalton Trans 3167Google Scholar
  21. 21.
    Gareth RL, Dance I (2000) Inorg Chim Acta 306:160CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Photonics and Display InstituteNational Chiao Tung UniversityHsinchuTaiwan, ROC

Personalised recommendations