Journal of Chemical Crystallography

, Volume 40, Issue 8, pp 639–645

Crystal Structures of Trinuclear Chlorido(N,N′-diethylthiourea)copper(I) and a Second Polymorph of Iodidotris(N,N′-diethylthiourea)copper(I)

  • Saeed Ahmad
  • Muhammad Altaf
  • Helen Stoeckli-Evans
  • Tobias Rüffer
  • Heinrich Lang
  • Muhammad Mufakkar
  • Abdul Waheed
Original Paper

Abstract

Reactions of N,N′-diethylthiourea (Detu) with copper(I) cyanide and copper(I) iodide in a 2:1 M ratio in acetonitrile resulted in the formation of [Cu(Detu)Cl]3·(CH3CN)0.5 (1) and [Cu(Detu)3I] (2), respectively. In compound 1 each copper atom is coordinated with one sulfur atom of Detu and with one chloride ion forming a centrosymmetric trinuclear core (Cu3S3Cl3) that exhibits a Cu–Cu separation of 2.7383(5) Ǻ indicating the existence of cuprophilic interactions. Complex 2 crystallizes with two independent molecules per asymmetric unit. Each copper atom is coordinated with three sulfur atoms of Detu and with one iodide ion in a tetrahedral arrangement.

Graphical Abstract

Reactions of N,N′-diethylthiourea (Detu) with copper(I) cyanide and copper(I) iodide in a 2:1 M ratio in acetonitrile resulted in the formation of [Cu(Detu)Cl]3·(CH3CN)0.5 (1) and [Cu(Detu)3I] (2), respectively. In compound 1 each copper atom is coordinated with one sulfur atom of Detu and with one chloride ion forming a centrosymmetric trinuclear core (Cu3S3Cl3) that exhibits a Cu–Cu separation of 2.7383(5) Ǻ indicating the existence of cuprophilic interactions. Complex 2 crystallizes with two independent molecules per asymmetric unit. Each copper atom is coordinated with three sulfur atoms of Detu and with one iodide ion in a tetrahedral arrangement.

Keywords

Copper(I) N,N′-diethylthiourea Crystal structure Cuprophilic interactions 

References

  1. 1.
    Rauf MK, Imtiaz-ud-Din, Badshah A, Gielen M, Ebihara M, de Vos D, Ahmed S (2009) J Inorg Biochem 103:1135–1144CrossRefGoogle Scholar
  2. 2.
    Rodríguez-Argüelles MC, Tourón-Touceda P, Cao R, García-Deibe AM, Pelagatti P, Pelizzi C, Zani F (2009) J Inorg Biochem 103:35–42CrossRefGoogle Scholar
  3. 3.
    Lobana TS, Khanna S, Butcher RJ, Hunter AD, Zeller M (2006) Polyhedron 25:2755CrossRefGoogle Scholar
  4. 4.
    Kaim W, Schwederski B (1994) Bioinorganic chemistry: inorganic elements in the chemistry of life. Wiley, New York, p 336Google Scholar
  5. 5.
    Stillman MJ, Shaw CF III, Suzuki KT (1992) Metallothionein. VCH Publishers Inc, New YorkGoogle Scholar
  6. 6.
    Stillman MJ (1995) Coord Chem Rev 144:461–470CrossRefGoogle Scholar
  7. 7.
    Henkel G, Krebs B (2004) Chem Rev 104:801–824CrossRefGoogle Scholar
  8. 8.
    Vasak M, Hasler DW (2000) Curr Opin Chem Biol 4:177–183CrossRefGoogle Scholar
  9. 9.
    Zoufala P, Rüffer T, Lang H, Ahmad S, Mufakkar M (2007) Anal Sci: X-ray Struct Anal Online 23:x219CrossRefGoogle Scholar
  10. 10.
    Mufakkar M, Ahmad S, Khan IU, Fun HK, Chantrapromma S (2007) Acta Crystallogr E 63:m2384CrossRefGoogle Scholar
  11. 11.
    Mufakkar M, Tahir MN, Ahmad S, Shaheen MA, Waheed A (2009) Acta Crystallogr E65:m892Google Scholar
  12. 12.
    Khan IK, Mufakkar M, Ahmad S, Fun HK, Chantrapromma S (2007) Acta Crystallogr E63:m2550–2551Google Scholar
  13. 13.
    Lobana TS, Sharma R, Sharma R, Butcher RJ (2008) Z Anorg Allg Chem 634:1785–1790CrossRefGoogle Scholar
  14. 14.
    Stocker FB, Troester MA, Britton D (1996) Inorg Chem 35:3145CrossRefGoogle Scholar
  15. 15.
    Cingi MB, Lanfredi AMM, Tiripicchio A, Camellini MT (1977) Acta Crystallogr B 33:3772CrossRefGoogle Scholar
  16. 16.
    Hunt GW, Terry NW III, Amma EL (1979) Acta Crystallogr B 35:1235CrossRefGoogle Scholar
  17. 17.
    Spofford WA III, Amma EL (1970) Acta Crystallogr B 26:1474CrossRefGoogle Scholar
  18. 18.
    Taylor F Jr, Weiniger MS, Amma EL (1974) Inorg Chem 13:2835CrossRefGoogle Scholar
  19. 19.
    Hanic F, Durcanska E (1969) Inorg Chim Acta 3:293CrossRefGoogle Scholar
  20. 20.
    Bombicz P, Mutikainen I, Krunks M, Leskela T, Madarasz J, Niinisto L (2004) Inorg Chim Acta 357:513–525CrossRefGoogle Scholar
  21. 21.
    Okaya Y, Knobler CB (1964) Acta Crystallogr B 17:928CrossRefGoogle Scholar
  22. 22.
    Girling RL, Amma EL (1971) Inorg Chem 10:335–340CrossRefGoogle Scholar
  23. 23.
    Griffith EH, Hunt GW, Amma EL (1976) Chem Commun 432–433Google Scholar
  24. 24.
    Dubler E, Bensch W (1986) Inorg Chim Acta 125:37–42CrossRefGoogle Scholar
  25. 25.
    Fun H-K, Razak IA, Pakawatchai C, Khaokong C, Chantrapromma S, Saithong S (1998) Acta Crystallogr C 54:453–456CrossRefGoogle Scholar
  26. 26.
    Stoe Cie (2005) X-Area V1.26 & X-RED32 V1.26 software. Stoe & Cie GmbH, DarmstadtGoogle Scholar
  27. 27.
    Sheldrick GM (2008) Acta Crystallogr A64:112Google Scholar
  28. 28.
    Spek AL (2009) Acta Crystallogr D 65:148CrossRefGoogle Scholar
  29. 29.
    Singh K, Long JR, Stavropoulos PJ (1997) J Am Chem Soc 119:2942CrossRefGoogle Scholar
  30. 30.
    Siemeling U, Vorfeld U, Neumann B, Stammler H-G (1997) Chem Commun 1723–1724Google Scholar
  31. 31.
    Lobana TS, Sharma R, Mehra S, Castineiras A, Turner R (2005) Inorg Chem 44:1914CrossRefGoogle Scholar
  32. 32.
    De Ranter CJ, Rolies M (1977) Cryst Struct Commun 6:399Google Scholar
  33. 33.
    Bowmaker GA, Hanna JV, Pakawatchai C, Skelton BW, Thanyasirikul Y, White AH (2009) Inorg Chem 48:350CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Saeed Ahmad
    • 1
  • Muhammad Altaf
    • 2
  • Helen Stoeckli-Evans
    • 2
  • Tobias Rüffer
    • 3
  • Heinrich Lang
    • 3
  • Muhammad Mufakkar
    • 4
  • Abdul Waheed
    • 4
  1. 1.Department of ChemistryUniversity of Engineering and TechnologyLahorePakistan
  2. 2.Institute of PhysicsUniversity of NeuchâtelNeuchâtelSwitzerland
  3. 3.Lehrstuhl für Anorganische Chemie, Institut für ChemieTechnische Universität ChemnitzChemnitzGermany
  4. 4.Department of ChemistryGovernment College UniversityLahorePakistan

Personalised recommendations