Skip to main content
Log in

Hydrogen Bonding in the Crystal Structures of New Imidazolium Triflimide Protic Ionic Liquids

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The synthesis and crystal structures of 1,3-diamino-2-methylimidazolium bis(trifluoromethylsulfonyl)imide (1), 1,3-dihydroxy-2-methylimidazolium bis(trifluoromethylsulfonyl)imide (2) and 1-(2-(diethylammonio)ethyl)-3-methylimidazolium bis(bis(trifluoromethylsulfonyl)imide) (4) are reported. The salts 1, 2 and 4 have melting points below 100 °C, the intermediate 1-(2-(diethylamino)ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (3) is liquid at room temperature. Compound 1 is monoclinic, space group P21/n with a = 8.4979(4) Å, b = 12.2803(6) Å, c = 13.9400(7) Å, β = 93.086(4)°, and Z = 4. Compound 2 is monoclinic, space group P21/c with a = 7.6165(2) Å, b = 20.5323(8) Å, c = 9.7654(3) Å, β = 111.046(2)°, and Z = 4. Compound 4 is triclinic, space group \( P\overline{1} \) with a = 8.5313(4) Å, b = 9.2157(4) Å, c = 20.5812(8) Å, α = 84.668(2)°, β = 83.738(2)°, γ = 63.096(2)°, and Z = 2. The ions in 1 build a network of N–H···O hydrogen bonds, in 2 they are linked to chains by O–H···N and bifurcated O–H···O hydrogen bonds, whereas in 4 they form pairs by N–H···O contacts. The triflimide anions adopt transoid conformations.

Index Abstract

Short interionic contacts, conformational flexibility, and disorder phenomena were identified in the crystal structures of three new, low-melting, protic imidazolium triflimides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Inorg Chem 35:1168–1178. doi:10.1021/ic951325x

    Article  CAS  Google Scholar 

  2. Henderson WA, Herstedt M, Young VG, Passerini S, De Long HC, Trulove PC (2006) Inorg Chem 45:1412–1414. doi:10.1021/ic0513742

    Article  CAS  Google Scholar 

  3. Hunt PA, Gould IR, Kirchner B (2007) Aust J Chem 60:9–14. doi:10.1071/CH06301

    Article  CAS  Google Scholar 

  4. Xue L, Padgett CW, DesMarteau DD, Pennington WT (2002) Solid State Sci 4:1535–1545. doi:10.1016/S1293-2558(02)00050-X

    Article  CAS  Google Scholar 

  5. Polyakov OG, Ivanova SM, Gaudinski CM, Miller SM, Anderson OP, Strauss SH (1999) Organometallics 18:3769–3771. doi:10.1021/om990196f

    Article  CAS  Google Scholar 

  6. Mezailles N, Ricard L, Gagosz F (2005) Org Lett 7:4133–4136. doi:10.1021/ol0515917

    Article  CAS  Google Scholar 

  7. Williams DB, Stoll ME, Scott BL, Costa DA, Oldham WJ (2005) Chem Commun (Camb) 1438–1440

  8. Kawamura M, Shimada S (2007) Inorg Chim Acta 360:2162–2168. doi:10.1016/j.ica.2006.09.011

    Article  CAS  Google Scholar 

  9. Xue L, DesMarteau DD, Pennington WT (2005) Solid State Sci 7:311–318

    CAS  Google Scholar 

  10. Haas A, Klare C, Betz P, Bruckmann J, Krueger C, Tsay YH, Aubke F (1996) Inorg Chem 35:1918–1925. doi:10.1021/ic9507934

    Article  CAS  Google Scholar 

  11. Nockemann P, Thijs B, Pittois S, Thoen J, Glorieux C, Van Hecke K, Van Meervelt L, Kirchner B, Binnemans K (2006) J Phys Chem B 110:20978–20992. doi:10.1021/jp0642995

    Article  CAS  Google Scholar 

  12. Babai A, Mudring AV (2006) Inorg Chem 45:3249–3255. doi:10.1021/ic051820l

    Article  CAS  Google Scholar 

  13. Davidson MG, Raithby PR, Johnson AL, Bolton PD (2003) Eur J Inorg Chem 3445–3452. doi:10.1002/ejic.200300372

  14. Holbrey JD, Reichert WM, Rogers RD (2004) Dalton Trans 2267–2271. doi:10.1039/b405901h

  15. Jodry JJ, Mikami K (2004) Tetrahedron Lett 45:4429–4431. doi:10.1016/j.tetlet.2004.04.063

    Article  CAS  Google Scholar 

  16. Payagala T, Huang J, Breitbach ZS, Sharma PS, Armstrong DW (2007) Chem Mater 19:5848–5850. doi:10.1021/cm702325a

    Article  CAS  Google Scholar 

  17. Golding JJ, MacFarlane DR, Spiccia L, Forsyth M, Skelton BW, White AH (1998) Chem Commun (Camb) 1593–1594. doi:10.1039/a802745e

  18. Katritzky AR, Yang H, Zhang D, Kirichenko K, Smiglak M, Holbrey JD, Reichert WM, Rogers RD (2006) N J Chem 30:349–358. doi:10.1039/b509260d

    Article  CAS  Google Scholar 

  19. Choudhury AR, Winterton N, Steiner A, Cooper AI, Johnson KA (2006) Cryst Eng Comm 8:742–745. doi:10.1039/b609598d

    CAS  Google Scholar 

  20. Lachwa J, Bento I, Duarte MT, Lopes JNC, Rebelo LPN (2006) Chem Commun (Camb) 2445–2447

  21. Fox PA, Griffin ST, Reichert WM, Salter EA, Smith AB, Tickell MD, Wicker BF, Cioffi EA, Davis JH, Rogers RD, Wierzbicki A (2005) Chem Commun (Camb) 3679–3681. doi:10.1039/b504631a

  22. Patil ML, Rao CVL, Yonezawa K, Takizawa S, Onitsuka K, Sasai H (2006) Org Lett 8:227–230. doi:10.1021/ol052466y

    Article  CAS  Google Scholar 

  23. Choudhury AR, Winterton N, Steiner A, Cooper AI, Johnson KA (2005) J Am Chem Soc 127:16792–16793. doi:10.1021/ja055956u

    Article  CAS  Google Scholar 

  24. MacFarlane DR, Meakin P, Sun J, Amini N, Forsyth M (1999) J Phys Chem B 103:4164–4170. doi:10.1021/jp984145s

    Article  CAS  Google Scholar 

  25. Henderson WA, Young VG, Pearson W, Passerini S, De Long HC, Trulove PC (2006) J Phys Condens Matter 18:10377–10390. doi:10.1088/0953-8984/18/46/006

    Article  CAS  Google Scholar 

  26. Forsyth CM, MacFarlane DR, Golding JJ, Huang J, Sun J, Forsyth M (2002) Chem Mater 14:2103–2108. doi:10.1021/cm0107777

    Article  CAS  Google Scholar 

  27. Henderson WA, Young VG, Passerini S, Trulove PC, De Long HC (2006) Chem Mater 18:934–938. doi:10.1021/cm051936f

    Article  CAS  Google Scholar 

  28. Nuthakki B, Greaves TL, Krodkiewska I, Weerawardena A, Burgar MI, Mulder RJ, Drummond CJ (2007) Aust J Chem 60:21–28. doi:10.1071/CH06363

    Article  CAS  Google Scholar 

  29. Ohno H, Yoshizawa M (2002) Solid State Ion 154–155:303–309. doi:10.1016/S0167-2738(02)00526-X

    Article  Google Scholar 

  30. Zak Z, Ruzicka A, Michot C (1998) Z Krist 213:217–222

    Article  CAS  Google Scholar 

  31. Sheldrick GM (1997) SHELXS97. Program package for crystal structure solution and refinement. University of Göttingen, Germany

    Google Scholar 

  32. Link H, Klötzer W, Karpitschka EM, Montavon M, Müssner R, Singewald N (1990) Angew Chem Int Ed Engl 29:556–557. doi:10.1002/anie.199005561

    Article  Google Scholar 

  33. Laus G, Stadlwieser J, Klötzer W (1989) Synthesis 773–775. doi:10.1055/s-1989-27392

  34. Laus G, Schwärzler A, Schuster P, Bentivoglio G, Hummel M, Wurst K, Kahlenberg V, Lörting T, Schütz J, Peringer P, Bonn G, Nauer G, Schottenberger H (2007) Z Naturforsch 62b:295–308

    Google Scholar 

  35. Laus G, Schwärzler A, Bentivoglio G, Hummel M, Kahlenberg V, Wurst K, Kristeva E, Schütz J, Kopacka H, Kreutz C, Bonn G, Andriyko Y, Nauer G, Schottenberger H (2008) Z Naturforsch 63b:447–464

    Google Scholar 

  36. Zhang Z, Xie Y, Li W, Hu S, Song J, Jiang T, Han B (2008) Angew Chem Int Ed 47:1127–1129. doi:10.1002/anie.200704487

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Laus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bentivoglio, G., Schwärzler, A., Wurst, K. et al. Hydrogen Bonding in the Crystal Structures of New Imidazolium Triflimide Protic Ionic Liquids. J Chem Crystallogr 39, 662–668 (2009). https://doi.org/10.1007/s10870-009-9554-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-009-9554-8

Keywords

Navigation