Journal of Chemical Crystallography

, Volume 39, Issue 4, pp 229–240 | Cite as

Classification of Structural Motifs in Porphyrinic Coordination Polymers Assembled from Porphyrin Building Units, 5,10,15,20-Tetrapyridylporphyrin and Its Derivatives

Review Paper

Abstract

In this review, we classify 1D, 2D, and 3D structural motifs found in porphyrinic coordination polymers assembled from 5,10,15,20-tetrapyridylporphyrin (TPyP) and its derivatives. The classifications are based on dimensionality, metal-to-porphyrin linkage, porphyrin type, and metal-to-porphyrin ratio. 1D porphyrin polymers often share the same connectivity (or structural motifs) with analogous 2D and 3D polymers. We identify interrelationships among 1D, 2D, and 3D coordination polymers and examine the connectivity of such interrelated structures. We also discuss the broad similarities and differences of the synthetic methods of all structures presented here.

Graphical Abstract

We classify 1D, 2D, and 3D structural motifs found in porphyrinic coordination polymers assembled from 5,10,15,20-tetrapyridylporphyrin (TPyP) and its derivatives. The classifications are based on dimensionality, metal-to-porphyrin linkage, porphyrin type, and metal-to-porphyrin ratio. We identify interrelationships among 1D, 2D, and 3D coordination polymers and examine the connectivity of such interrelated structures.

Keywords

Porphyrin Coordination polymers Structural motif Topological control 

Notes

Acknowledgements

The authors gratefully acknowledge financial support from the University of Nebraska-Lincoln.

References

  1. 1.
    Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M et al (2002) Science 295:469. doi: 10.1126/science.1067208 CrossRefGoogle Scholar
  2. 2.
    O’Keeffe M, Eddaoudi M, Li H, Reineke T, Yaghi OM (2000) J Solid State Chem 152:2. doi: 10.1006/jssc.2000.8723 Google Scholar
  3. 3.
    Robson R (2000) J Chem Soc Dalton Trans 3735. doi: 10.1039/b003591m
  4. 4.
    Öhrström L, Larsson K (2005) Molecule based materials, the structural network approach. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Noro S-I, Kitaura R, Kondo M, Kitagawa S, Ishii T, Matsuzaka H et al (2002) J Am Chem Soc 124:2568. doi: 10.1021/ja0113192 CrossRefGoogle Scholar
  6. 6.
    Yaghi OM, Li H, Davis C, Richardson D, Groy TL (1998) Acc Chem Res 31:474. doi: 10.1021/ar970151f CrossRefGoogle Scholar
  7. 7.
    Halder GJ, Kepert CJ (2002) J Am Chem Soc 124:2568. doi: 10.1021/ja0113192 CrossRefGoogle Scholar
  8. 8.
    Fletcher AJ, Cussen EJ, Bradshaw D, Rosseinsky MJ (2004) J Am Chem Soc 126:9750. doi: 10.1021/ja0490267 CrossRefGoogle Scholar
  9. 9.
    Zheng NF, Bu XH, Feng PY (2002) J Am Chem Soc 124:9688. doi: 10.1021/ja020480p CrossRefGoogle Scholar
  10. 10.
    Choe W, Kiang Y-H, Xu Z, Lee S (1999) Chem Mater 11:1776. doi: 10.1021/cm981153c CrossRefGoogle Scholar
  11. 11.
    Abrahams BF, Hoskins BF, Robson R (1991) J Am Chem Soc 113:3606. doi: 10.1021/ja00009a065 CrossRefGoogle Scholar
  12. 12.
    Chou J-H, Nalwa HS, Kosal ME, Rakow NA, Suslick KS (2000) The porphyrin handbook. Academic Press, Orlando, pp 6–43Google Scholar
  13. 13.
    Choi E-Y, Barron PM, Novotny RN, Hu C, Kwon Y-U, Choe W (2008) CrystEngComm 824. doi: 10.1039/b720035h
  14. 14.
    Suslick KS, Bhyrappa P, Chou J-H, Kosal ME, Nakagaki S, Smithenry DW et al (2005) Acc Chem Res 38:283. doi: 10.1021/ar040173j CrossRefGoogle Scholar
  15. 15.
    Goldberg I (2000) Chem Eur J 6:3863. doi :10.1002/1521-3765(20001103)6:21<3863::AID-CHEM3863>3.3.CO;2-MCrossRefGoogle Scholar
  16. 16.
    Goldberg I (2002) CrystEngComm 4:109. doi: 10.1039/b202190k CrossRefGoogle Scholar
  17. 17.
    Carlucci L, Ciani G, Proserpio DM, Porta F (2005) CrystEngComm 7:78. doi: 10.1039/b417709f CrossRefGoogle Scholar
  18. 18.
    Abrahams BF, Hoskins BF, Michail DM, Robson R (1994) Nature 369:727. doi: 10.1038/369727a0 CrossRefGoogle Scholar
  19. 19.
    Kobuke Y (2006) Struct Bond 121:49. doi: 10.1007/430_023 CrossRefGoogle Scholar
  20. 20.
    Iengo E, Zangrando E, Alessio E (2006) Acc Chem Res 39:841. doi: 10.1021/ar040240+ CrossRefGoogle Scholar
  21. 21.
    Lee SJ, Hupp JT (2006) Coord Chem Rev 250:1710. doi: 10.1016/j.ccr.2006.01.015 CrossRefGoogle Scholar
  22. 22.
    Sharma CVK, Broker GA, Huddleston JG, Baldwin JW, Metzger RM, Rogers RD (1999) J Am Chem Soc 121:1137. doi: 10.1021/ja983983x CrossRefGoogle Scholar
  23. 23.
    Sharma CVK, Broker GA, Rogers RD (2000) J Solid State Chem 152:253. doi: 10.1006/jssc.2000.8690 CrossRefGoogle Scholar
  24. 24.
    Sun D, Tham F, Reed CA, Boyd PDW (2002) Proc Natl Acad Sci USA 99:5088. doi: 10.1073/pnas.072602399 CrossRefGoogle Scholar
  25. 25.
    Pan L, Noll BC, Wang X (1999) Chem Commun (Camb) 157. doi: 10.1039/a807242f
  26. 26.
    Carlucci L, Ciani G, Proserpio DM, Porta F (2003) Angew Chem Int Ed 42:317. doi: 10.1002/anie.200390106 CrossRefGoogle Scholar
  27. 27.
    Kondo M, Kimura Y, Wada K, Mizutani T, Ito Y, Kitagawa S (2000) Chem Lett 818. doi: 10.1246/cl.2000.818
  28. 28.
    Shachter AM, Fleischer EB, Haltiwanger RC (1988) Chem Commun 960Google Scholar
  29. 29.
    Deiters E, Bulach V, Kyritsakas N, Hosseini MW (2005) N J Chem 29:1508. doi: 10.1039/b511049c CrossRefGoogle Scholar
  30. 30.
    Krupitsky H, Stein Z, Goldberg I, Strouse CE (1994) J Incl Phenom Mol Recog Chem 18:177. doi: 10.1007/BF00705820 CrossRefGoogle Scholar
  31. 31.
    Ring DJ, Aragoni MC, Champness NR, Wilson C (2005) CrystEngComm 7:621. doi: 10.1039/b515083n CrossRefGoogle Scholar
  32. 32.
    Pan L, Huang X, Phan HLN, Emge TJ, Li J, Wang X (2004) Inorg Chem 43:6878. doi: 10.1021/ic049141i CrossRefGoogle Scholar
  33. 33.
    Diskin-Posner Y, Patra GK, Goldberg I (2001) J Chem Soc Dalton Trans 2775. doi: 10.1039/b104961p
  34. 34.
    Pan L, Kelly S, Huang X, Li J (2002) Chem Commun (Camb) 2334. doi: 10.1039/b207855d
  35. 35.
    Ohmura T, Usuki A, Fukumori K, Ohta T, Ito M, Tatsumi K (2006) Inorg Chem 45:7988. doi: 10.1021/ic060358h CrossRefGoogle Scholar
  36. 36.
    Lin K-J (1999) Angew Chem Int Ed 38:2730. doi :10.1002/(SICI)1521-3773(19990917)38:18<2730::AID-ANIE2730>3.0.CO;2-9CrossRefGoogle Scholar
  37. 37.
    George S, Goldberg I (2005) Acta Crystallogr E61:m1441Google Scholar
  38. 38.
    Deiters E, Bulach V, Hosseini MW (2005) Chem Commun (Camb) 3906. doi: 10.1039/b508135c
  39. 39.
    Hagrman D, Hagrman PJ, Zubieta J (1999) Angew Chem Int Ed 38:3165. doi :10.1002/(SICI)1521-3773(19991102)38:21<3165::AID-ANIE3165>3.0.CO;2-OCrossRefGoogle Scholar
  40. 40.
    Kitagawa S, Noro S-I, Nakamura T (2006) Chem Commun (Camb) 701. doi: 10.1039/b511728c

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemistry, Nebraska Center for Materials and NanoscienceUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations