Advertisement

Journal of Chemical Crystallography

, Volume 39, Issue 3, pp 209–212 | Cite as

Synthesis and Crystal Structure of 4-Methyl-6H-pyrido[3,2,1-jk]carbazol-6-one

  • Boris ShivachevEmail author
  • Petar Petrov
  • Malinka Stoyanova
Original Paper

Abstract

The synthesis, NMR and X-ray structure of 4-methyl-6H-pyrido[3,2,1-jk]carbazol-6-one—a potential DNA intercalator are reported. The compound crystallizes in the orthorhombic Pbca space group with unit cell parameters: a = 7.775(8), b = 15.113(7), c = 19.849(7) Å, V = 2332.8(3) Å3, Mr = 233.26 and Z = 8. In the three-dimensional arrangement of the molecules no classical hydrogen bonds were found; weak π···π and C–H···O interactions are responsible for the packing of the molecules in the crystal structure.

Index Abstract

In the three-dimensional arrangement of the title compound no classical hydrogen bonds were found; weak π···π and C–H···O interactions are responsible for the packing of the molecules in the crystal structure. Open image in new window

Keywords

DNA intercalator Crystal structure π···π Interactions NMR 

Notes

Acknowledgment

The authors thank the National Research Fund of Bulgaria for financial support; Grant TK357/TK358/VUH 03/05 VU 986.

References

  1. 1.
    Martínez R, Chacón-García L (2005) Curr Med Chem 12:127–151Google Scholar
  2. 2.
    Zipper H, Brunner H, Bernhagen J, Vitzthum F (2004) Nucleic Acids Res 32:E103. doi: 10.1093/nar/gnh101 CrossRefGoogle Scholar
  3. 3.
    Bondensgaard K, Jacobsen JP (1999) Bioconjug Chem 10:735–744. doi: 10.1021/bc9900284 CrossRefGoogle Scholar
  4. 4.
    Staerk D, Hamed AA, Pedersen EB, Jacobsen JP (1997) Bioconjug Chem 8:869–877. doi: 10.1021/bc970067k CrossRefGoogle Scholar
  5. 5.
    Strekowski L, Wilson B (2007) Mutat Res 623:3–13. doi: 10.1016/j.mrfmmm.2007.03.008 Google Scholar
  6. 6.
    Kondo S, Kinjo T, Yano Y (2004) Bioorg Med Chem Lett 14:1641–1643. doi: 10.1016/j.bmcl.2004.01.061 CrossRefGoogle Scholar
  7. 7.
    Petrov P, Stoyanova M, Shivachev B (2008) Acta Crystallogr E64:o72Google Scholar
  8. 8.
    Perekalin VV, Lerner OM (1951) Zh Obshch Khim 21:1995–2001 in RussianGoogle Scholar
  9. 9.
    Schenkel H, Aeberli M (1957) US Patent 2 776 983Google Scholar
  10. 10.
    Enraf-Nonius diffractometer control software, Release 5.1, 1993. Enraf-Nonius, Delft, The NetherlandsGoogle Scholar
  11. 11.
    Farrugia LJ (1999) J Appl Cryst 32:837–838. doi: 10.1107/S0021889899006020 CrossRefGoogle Scholar
  12. 12.
    Sheldrick GM (2008) Acta Crystallogr A64:112–122Google Scholar
  13. 13.
    Farrugia LJ (1997) J Appl Cryst 30:565. doi: 10.1107/S0021889897003117 CrossRefGoogle Scholar
  14. 14.
    Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P et al (2002) Acta Crystallogr B58:389–397Google Scholar
  15. 15.
    Nygren CL, Bragg MET, Turner JFC (2004) Acta Crystallogr C60:m4–m6Google Scholar
  16. 16.
    Bock H, Arad C, Nather C, Havlas Z (1997) Helv Chim Acta 80:606–620. doi: 10.1002/hlca.19970800223 CrossRefGoogle Scholar
  17. 17.
    Baker RJ, Chen Z, Krafcik RB, Masnovi J (1991) Acta Crystallogr C47:2167–2170Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Boris Shivachev
    • 1
    Email author
  • Petar Petrov
    • 2
  • Malinka Stoyanova
    • 3
  1. 1.Department of Structural BiologyUniversity of PittsburghPittsburghUSA
  2. 2.Department of Organic Chemistry, Faculty of ChemistryUniversity of SofiaSofiaBulgaria
  3. 3.Institute of Organic ChemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations