Journal of Chemical Crystallography

, Volume 39, Issue 2, pp 151–156 | Cite as

Low Temperature Crystal Structures of Two Rhodanine Derivatives, 3-Amino Rhodanine and 3-Methyl Rhodanine: Geometry of the Rhodanine Ring

  • Saima Jabeen
  • Rex A. Palmer
  • Brian S. Potter
  • Madeleine Helliwell
  • Trevor J. Dines
  • Babur Z. Chowdhry
Original Paper


Rhodanines (2-thio-4-oxothiazolidines) are synthetic small molecular weight organic molecules with diverse applications in biochemistry, medicinal chemistry, photochemistry, coordination chemistry and industry. The X-ray crystal structure determination of two rhodanine derivatives, namely (I), 3-aminorhodanine [3-amino-2-thio-4-oxothiazolidine], C3H4N2OS2, and (II) 3-methylrhodanine [3-methyl-2-thio-4-oxothiazolidine], C4H5NOS2, have been conducted at 100 K. I crystallizes in the monoclinic space group P21/n with unit cell parameters a = 9.662(2), b = 9.234(2), c = 13.384(2) Å, β = 105.425(3)°, V = 1151.1(3) Å3, Z = 8 (2 independent molecules per asymmetric unit), density (calculated) = 1.710 mg/m3, absorption coefficient = 0.815 mm−1. II crystallizes in the orthorhombic space group Iba2 with unit cell a = 20.117(4), b = 23.449(5), c = 7.852(2) Å, V = 3703.9(12) Å3, Z = 24 (three independent molecules per asymmetric unit), density (calculated) = 1.584 mg/m3, absorption coefficient 0.755 mm−1. For I in the final refinement cycle the data/restraints /parameter ratios were 2639/0/161, goodness-of-fit on F2 = 0.934, final R indices [I > 2sigma(I)] were R1 = 0.0299, wR2 = 0.0545 and R indices (all data) R1 = 0.0399, wR2 = 0.0568. The largest difference peak and hole were 0.402 and −0.259 e Å−3. For II in the final refinement cycle the data/restraints/parameter ratios were 3372/1/221, goodness-of-fit on F2 = 0.950, final R indices [I > 2sigma(I)] were R1 = 0.0407, wR2 = 0.1048 and R indices (all data) R1 = 0.0450, wR2 = 0.1088. The absolute structure parameter = 0.19(9) and largest difference peak and hole 0.934 and −0.301 e Å−3. Details of the geometry of the five molecules (two for I and three for II) and the crystal structures are fully discussed. Corresponding features of the molecular geometry are highly consistent and firmly establish the geometry of the rhodanine ring.

Index Abstract

Low temperature X-ray structures of (I) 3-aminorhodanine [3-amino-2-thio-4-oxothiazolidine] and (II) 3-methylrhodanine3-methyl-2-thio-4-oxothiazolidine are presented. Crystals of I are monoclinic and occupy space group P21/n with eight molecules (2 per asymmetric unit cell) and (II) is orthorhombic in space group Iba2 with 24 molecules (3 per asymmetric unit). This study has provided five highly consistent copies of the rhodanine ring at high resolution thus enabling its geometry to be established with confidence.

The two independent molecules in the asymmetric unit of 3-aminorhodanine (left) and the three independent molecules in the asymmetric unit of 3-methylrhodanine (right) showing space filling and van der Waals contacts (drawn with MERCURY [Bruno et al. Acta Cryst B58:389, 2002]).


Rhodanine derivative Crystal structure Low temperature Ring geometry Rhodanine 3-Aminorhodanine 3-Methylrhodanine Accurate crystal structures Geometry of the rhodanine ring 


  1. 1.
    Cutshall NS, Oday C, Prezhdo M (2005) Bioorg Med Chem Lett 15:3374CrossRefGoogle Scholar
  2. 2.
    Brown CF, Bradsher CK, Moser BF, Forrester S (1959) J Org Chem 24:1056CrossRefGoogle Scholar
  3. 3.
    Lin Y (2003) US Pat. 0009526 AI Chem AbstrGoogle Scholar
  4. 4.
    Peet PN (2000) IDrugs 3:131Google Scholar
  5. 5.
    Sakagami Y, Kumeda Y, Shibata M (1998) Biosci Biotech Biochem 62:1025CrossRefGoogle Scholar
  6. 6.
    Gorishniy VY, Lesyk RB (1994) Farm ZH (Kiev) 2:52Google Scholar
  7. 7.
    Khang N, Minh LV, Vinh NN, Binh TM, Kohi PG, Dong BN, Lien NK, Lien BK (1988) Chem Abstr 109:73374Google Scholar
  8. 8.
    Clark DA, Goldstein SW, Hulin B (1992) US Pat 5 036079 Chem Abstr 116:83663Google Scholar
  9. 9.
    Hindley RM, Haigh D, Cottam GP (1992) PCT Int Appl WO 92 07 839 Chem Abstr 117:212490Google Scholar
  10. 10.
    Ravindran G, Muthusubramanian S, Selvaraj S, Perumal S (2007) Phosporhous Sulfur Silicon Relat Elem 182:321CrossRefGoogle Scholar
  11. 11.
    Gasparova R, Lacova M (2005) Mol 10:937Google Scholar
  12. 12.
    Fu C, Thrane MV, Linden A, Heimgartner H (2004) Tetrahedron 60:5407CrossRefGoogle Scholar
  13. 13.
    Fabretti AC, Franchini G, Peyronel G, Ferrari M (1982) Polyhedron 1:633CrossRefGoogle Scholar
  14. 14.
    Subasi E, Ercag A, Sert S, Senturk OS (2006) Synth React Inorg Met Org Chem 36:705CrossRefGoogle Scholar
  15. 15.
    Jabeen S (2007) PhD Thesis, University of Greenwich, UKGoogle Scholar
  16. 16.
    Helm D, Lessor AE, Merritt LL (1962) Acta Cryst 15:1227CrossRefGoogle Scholar
  17. 17.
    Bruker (2001) SMART (Version 5.625), SADABS (Version 2.03a) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USAGoogle Scholar
  18. 18.
    Bruker (2002) SAINT. Version 6.36a. Bruker AXS Inc. Madison, Wisconsin, USAGoogle Scholar
  19. 19.
    Cosier J, Glazer MJ (1986) J Appl Cryst 19:105CrossRefGoogle Scholar
  20. 20.
    Sheldrick GM (1997) SHELXL-97. Program for Crystal Structure Refinement. Univiversity of Göttingen, GermanyGoogle Scholar
  21. 21.
    Farrugia LJ (1999) J Appl Cryst 32:837CrossRefGoogle Scholar
  22. 22.
    Spek AL (1990) Acta Crystallogr A46:C34Google Scholar
  23. 23.
    Bruno IJ, Cole JC, Edgington PR, Kessler MK, Macrae CF, McCabe P, Pearson J, Taylor R (2002) Acta Cryst B58:389Google Scholar
  24. 24.
    Flack HD (1983) Acta Cryst A39:876–881Google Scholar
  25. 25.
    Ladd MFC, Palmer RA (2003) Structure determination by X-ray crystallography, 4th edn. Klewer-Plenum, NY, p. 503Google Scholar
  26. 26.
    Ng SW (2007) Acta Cryst E63:o1363–o1364Google Scholar
  27. 27.
    Zhou Q-L, Zhang Z-H, Jing Z-L (2007) Acta Cryst E63:o3000Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Saima Jabeen
    • 1
  • Rex A. Palmer
    • 2
  • Brian S. Potter
    • 2
  • Madeleine Helliwell
    • 3
  • Trevor J. Dines
    • 4
  • Babur Z. Chowdhry
    • 1
  1. 1.School of ScienceUniversity of Greenwich, (Medway Campus)Chatham Maritime, KentUK
  2. 2.School of Crystallography, Birkbeck CollegeUniversity of LondonLondonUK
  3. 3.School of ChemistryUniversity of ManchesterManchesterUK
  4. 4.Division of Electronic Engineering & PhysicsUniversity of DundeeDundeeUK

Personalised recommendations