Journal of Chemical Crystallography

, Volume 38, Issue 6, pp 471–474 | Cite as

Synthesis and Structure of a Copper Complex of a Macrocyclic Ligand with Dissimilar HN+N(Amino)O2 and N2(Imino)O2 Inners

  • Tamboura Farba Bouyagui
  • Gaye Mohamed
  • Nedelec Jean Marie
  • Mentre Olivier
Communication

Abstract

The copper complex [Cu(C23H27Br2N4O2)(H2O)(NO3)]2 was synthesized and characterized by X-ray diffraction. The complex crystallizes in the triclinic system with space group P-1, lattice parameters: a = 13.2293(18) (Å), b = 14.184(20) (Å), c = 16.522(23) (Å), α = 91.923(2)°, β = 111.777(2)°, γ = 111.259(2)°, V = 2632.0(6) Å3, Z = 4, Dc = 0.88 Mg m−3. In the title compound [Cu(C23H27Br2N4O2)(H2O)(NO3)]2, the coordination polyhedron of the Cu atom is a square-planar environment. The structure consists of mononuclear units in which the copper(II) ions are linked in the plane by N, N′ iminato and O, O′ phenoxo atoms. In addition the crystal lattice contains one water molecule per unit.

Graphical Abstract

Dissymmetric ligand was efficiently synthesized and used to prepfsare a copper(II) complex which was characterized by X-ray diffraction

Keywords

Imine Copper Crystal structure 

References

  1. 1.
    Freeman HC (1973) In: Eichhorn GL (ed) Bioinorganic chemistry. Elsevier, Amsterdam. Chap 3 and references thereinGoogle Scholar
  2. 2.
    Kimura E (1993) Pure Appl Chem 65:355CrossRefGoogle Scholar
  3. 3.
    Tu C (1989) Silverman, D.N. Biochemistry 28:7913CrossRefGoogle Scholar
  4. 4.
    Kimura E, Koike T, Shionoya M, Shiro M (1992) Chem Lett 787Google Scholar
  5. 5.
    Kimura E (1994) Prog Inorg Chem 41:443CrossRefGoogle Scholar
  6. 6.
    Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Valley Books, Mill ValleyGoogle Scholar
  7. 7.
    Kaim W, Rall J (1996) Angew Chem Int Ed Eng 35:43CrossRefGoogle Scholar
  8. 8.
    Kumar K, Tweedle MF (1993) Inorg Chem 32:4193CrossRefGoogle Scholar
  9. 9.
    Karunakaran S, Kandaswamy MJ (1994) Chem Soc Dalton Trans 1595Google Scholar
  10. 10.
    Rybak-akimova EV, Alcock NW, Busch DH (1998) Inorg Chem 37:1563CrossRefGoogle Scholar
  11. 11.
    Yonemura M, Usuki N, Nakamura Y, Ohba M, Ōkawa HJ (2000) Chem Soc Dalton Trans 3624Google Scholar
  12. 12.
    Fraser C, Johnston L, Rheingold AL, Haggert G, Williams K, Whelan J, Bosnich B (1992) Inorg Chem 31:1835CrossRefGoogle Scholar
  13. 13.
    McColllum DG, Yap GPA, Rheingold AL, Bosnich B (1996) J Am Chem Soc 118:1365CrossRefGoogle Scholar
  14. 14.
    Nishio J, Ōkawa H, Ohtsuka S, Tomoto M (1994) Inorg Chim Acta 218:27CrossRefGoogle Scholar
  15. 15.
    Yonemura M, Matsumura Y, Furutachi H, Ohba, M, Ōkawa H, Fenton DE (1996) Chem Lett 601Google Scholar
  16. 16.
    Yonemura M, Matsumura Y, Furutachi H, Ohba M, Ōkawa H (1997) Inorg Chem 36:2711CrossRefGoogle Scholar
  17. 17.
    Sheldrick GM (1995) SADABS; Siemens analytical X-ray instrument division: Madison, WIGoogle Scholar
  18. 18.
    Sheldrick GM (1997) SHELXL-97: Program for crystal structure refinement. University of Göttingen, GermanyGoogle Scholar
  19. 19.
    Farrugia LJJ (1997) Appl Cryst 30:565CrossRefGoogle Scholar
  20. 20.
    Carnall WT, Siegel S, Ferrano JR, Tani B, Gebert E (1973) Inorg Chem 12:560CrossRefGoogle Scholar
  21. 21.
    Aruna VAJ, Alexander VJJ (1996) Chem Soc Dalton Trans 1867Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Tamboura Farba Bouyagui
    • 1
  • Gaye Mohamed
    • 1
  • Nedelec Jean Marie
    • 2
  • Mentre Olivier
    • 3
  1. 1.Faculté des Sciences et Techniques, Département de ChimieUniversité Cheikh Anta DiopDakarSenegal
  2. 2.Laboratoire des Matériaux Inorganiques UMR CNRS 6002Université Blaise PascalAubere CedexFrance
  3. 3.Laboratoire de Cristallochimie et Physico-chimie du Solide CNRS UMR 8012Université des Sciences et Technologies de LilleVilleneuve D’Ascq CedexFrance

Personalised recommendations