Biological-Activity Predictions and Hydrogen-Bonding Analysis of Estrane Derivatives of Steroids

Review Paper

Abstract

A total of twenty molecules of estrane derivatives of steroids have been included to predict their pharmacological effects, specific mechanisms of action, known toxicities, drug likeness, etc., by using the statistics of multilevel neighbourhoods of atoms (MNA) descriptors for active and inactive fragments. The biological activity spectra for substances have been correlated on Structure–activity relationships base (SAR data and knowledge base) which provides the different Pa (possibility of activity) and Pi (possibility of inactivity). Most of the probable activities are characterized by Pa and Pi values which depict that all the molecules have high value of teratogen activity. The Lipinski’s thumb rule predicts that all the estrane derivatives have stronger preponderance for “cancer-like-drug” molecules and some of their related analogous have been entered in the ANCI (American National Cancer Institute) database. D-θ and d-θ scatter plots for X–H···A intermolecular interactions are presented for better understanding of packing interactions which exist in estrane derivatives. Comparison of contacts from H(C) to O and H(O) to O, vis-à-vis their crystal structure reveals that contacts from H(O) to O predominate over H(C) to O. Few bifurcated hydrogen bonds based on O–H···O pattern have been observed while trifurcated O–H···O hydrogen bond has been observed only in one molecule (i.e. XVII). Solvent–solute/solute–solvent interactions have also been investigated to understand more complicated processes that occur for biomolecules in aqueous solutions. Most of the molecules have high probability of drug-likeness whereas molecule XIX (71.0%) and XX (86.4%) has low value of drug-likeness instead of observed range of 90.4–99.2%.

Graphical Abstract

Keywords

Estrane X-ray diffraction Biological activity Intermolecular hydrogen bonds Bifurcated hydrogen bonds Solvent–solute interactions Lipinski’s rule 

References

  1. 1.
    Makin HLJ (1975) Biochemistry of steroid hormones. Blackwell Scientific Publications, Oxford, p 4Google Scholar
  2. 2.
    Makin HLJ (1975) Biochemistry of steroid hormones. Blackwell Scientific Publications, Oxford, p 90Google Scholar
  3. 3.
    Briggs MJ, Brothern J (1970) Steroid biochemistry and pharmacology. Academic Press London, New York, p 89Google Scholar
  4. 4.
    Makin HLJ (1975) Biochemistry of steroid hormones. Blackwell Scientific Publications, Oxford, p 91Google Scholar
  5. 5.
    Rajnikant, Dinesh, Anshu S, Mousmi, Gupta BD (2004) J Chem Crystallogr 34(8):523CrossRefGoogle Scholar
  6. 6.
    Rajnikant, Dinesh, Chand B (2006) Acta Crystallogr A62:136Google Scholar
  7. 7.
    Rajnikant, Dinesh, Bhavnaish (2007) Indian J Biophysics Biochem (Accepted)Google Scholar
  8. 8.
    Rajnikant, Dinesh, Bhavnaish (2007) Z Kristallographie (Accepted)Google Scholar
  9. 9.
    Hanson JC, Nordman CE (1975) Acta Cryst B31:493Google Scholar
  10. 10.
    Kruger GJ, Coetzer J (1976) Acta Cryst B32:2587Google Scholar
  11. 11.
    Rohrer DC, Duax WL, Segaloff A (1978) Acta Cryst B34:2915Google Scholar
  12. 12.
    Kuantee J, Kartha G, Neeman M (1982) Acta Cryst B38:3142Google Scholar
  13. 13.
    Hylarides MD, Duesler EN, Mettler FA, Leon AA (1988) Acta Cryst C44:709Google Scholar
  14. 14.
    Duax WL, Griffin JF, Strong PD, Miller B, Kirk DN (1991) Acta Cryst C47:689Google Scholar
  15. 15.
    Smales CM, Blackwell LF, Waters JM, Burell AK (1997) Acta Cryst C53:1082Google Scholar
  16. 16.
    Kuhl A, Kornath A, Preut H, Kreisner W (1998) Acta Cryst C54:1115Google Scholar
  17. 17.
    Stankovic S, Lazar D, Pejanovic V, Petrovic J, Courseille C (1998) Acta Cryst C54:1158Google Scholar
  18. 18.
    Bull JR, De Koning PD (1998) Acta Cryst C54:1281Google Scholar
  19. 19.
    Bes MT, Wolfing J, Uson I, Pelikan SL, Tietze F, Frank E, Cchneider G (1998) Acta Cryst C54:1115Google Scholar
  20. 20.
    Sawicki MW, Li N, Ghosh D (1999) Acta Cryst C55:425Google Scholar
  21. 21.
    Lazar D, Stankovic S, Pejanovic V, Courseille C (2002) Acta Cryst C58:o63Google Scholar
  22. 22.
    Stankovic S, Lazar D, Medic-Mijacevic L, Penov-Gasi K, Sakac M, Andric S, Milenko B (2002) Acta Cryst C58:o172Google Scholar
  23. 23.
    Parrish DA, Pinkerton A (2003) Acta Cryst C59:o80Google Scholar
  24. 24.
    Starova GL, Egorov MS, Vasiljeva ES, Shavva AG (2003) Acta Cryst C59:o451Google Scholar
  25. 25.
    Yamamoto C, Matsumoto T, Watanabe M, Hitzer EMS, Mataka S, Thiemann T (2004) Acta Cryst C60:o130Google Scholar
  26. 26.
    Matsumoto T, Watanabe M, Matsumoto T, Mataka S, Thiemann T (2004) Acta Cryst C60:o813Google Scholar
  27. 27.
    Filimonov DA, Poroikov VV, Borodina Y, Gloriozova T (1999) J Chem Inf Comput Sci 39:666CrossRefGoogle Scholar
  28. 28.
    Poroikov VV, Filimonov DA (2001) Computer-assisted predictions of biological activity in search for and optimization of new drugs. Iridium Press, Moscow, p 149Google Scholar
  29. 29.
    Suchkov AP, Filimonov DA, Stepanchikova AV, Poroikov VV (2001) Environ Res 12(4):327Google Scholar
  30. 30.
    Anzali S, Barnickel G, Cezanne B, Krug M (2001) J Med Chem 44:2432CrossRefGoogle Scholar
  31. 31.
    Poroikov VV, Filimonov DA, Ihlenfeldt WD, Gloriozova TA, Lagunin AA, Borodina YV, Stepanchikova AV, Nicklaus MC (2003) J Chem Inf Comput Sci 43:228CrossRefGoogle Scholar
  32. 32.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Adv Drug Delivery Rev 23:3CrossRefGoogle Scholar
  33. 33.
    Taylor R, Kennard O (1982) J Am Chem Soc 104:5063CrossRefGoogle Scholar
  34. 34.
    Steiner T, Saegner W (1992) Acta Cryst B48:818Google Scholar
  35. 35.
    Steiner T, Saegner W (1992) J Am Chem Soc 114:10146CrossRefGoogle Scholar
  36. 36.
    Steiner T (1996) Cryst Rev 6:1CrossRefGoogle Scholar
  37. 37.
    Jefferey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York, p 400Google Scholar
  38. 38.
    Steiner T (1998) Acta Cryst B54:456Google Scholar
  39. 39.
    Desiraju GR, Steiner T (1999a) The weak hydrogen bond in structural chemistry and biology. Oxford University Press Inc., New YorkGoogle Scholar
  40. 40.
    Steiner T (2002) Angew Chem, Int Ed Eng 41:48CrossRefGoogle Scholar
  41. 41.
    Olovsson I, Jonsson PG (1976) The hydrogen bond. Recent developments in theory & experiment, vol 2. North Holland, Amsterdon, p 393Google Scholar
  42. 42.
    Preibner R, Egner U, Saenger W (1991) FEBS Lett 288:192CrossRefGoogle Scholar
  43. 43.
    Jeffery GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer-Verlag, BerlinGoogle Scholar
  44. 44.
    Kollman P (1993) Chem Rev 93:2395CrossRefGoogle Scholar
  45. 45.
    Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161CrossRefGoogle Scholar
  46. 46.
    Baldridge KK, Jonas V, Bain AD (2000) Chem Phys 113(17):7519CrossRefGoogle Scholar
  47. 47.
    Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, New YorkGoogle Scholar
  48. 48.
    Coutinho K, Canuto S, Zerner MC (2000) J Chem Phys 112:9874CrossRefGoogle Scholar
  49. 49.
    Canuto S, Coutinho K, Trzesniak D (2002) Adv Quantum Chem 41:161CrossRefGoogle Scholar
  50. 50.
    Desiraju GR, Steiner T (1999b) The weak hydrogen bond in structural chemistry and biology. Oxford University Press Inc., New York, p 116Google Scholar
  51. 51.
    Jedlovszky P, Turi L (1997) J Phys Chem B101:5429Google Scholar
  52. 52.
    Tezuka T, Nakagawa M, Yokoi K, Nagawa Y, Yamagaki YT, Nakanishi H (1997) Tetrahedron Lett 38:4223CrossRefGoogle Scholar
  53. 53.
    Davidson MG, Lamb S (1997) Polyhedron 16:4393CrossRefGoogle Scholar
  54. 54.
    Rivelino R, Canuto S, Coutinho K (2004) Braz J Phys 34(1):84CrossRefGoogle Scholar
  55. 55.
    Williams SP, Sigler PB (1998) Nature (London) 393:392CrossRefGoogle Scholar
  56. 56.
    Klebe G, Mietzner T, Weber F (1999) Comput-Aided Mol Des 13:35CrossRefGoogle Scholar
  57. 57.
    Chen JM, Xu XL, Wawrzak Z, Basarab GS, Jordan DB (1998) Biochemistry 37:17735CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Condensed Matter Physics Group, Post-Graduate Department of PhysicsUniversity of JammuJammu TawiIndia

Personalised recommendations