Journal of Chemical Crystallography

, Volume 35, Issue 9, pp 657–665 | Cite as

A new polymorph of tri(p-tolyl)boroxine

  • Monika C. Haberecht
  • Michael Bolte
  • Matthias Wagner
  • Hans-Wolfram Lerner
Article

A new orthorhombic polymorph of tri(p-tolyl)boroxine (Pmn21) with relatively short intermolecular B–O distances of 3.321 Å was crystallized from CDCl3 at ambient temperature. The crystal structure of the orthorhombic polymorph of tri(p-tolyl)boroxine shows the shortest intermolecular B–O contact yet found in boroxines. The cell dimensions of the orthorhombic polymorph of tri(p-tolyl)boroxine are a = 21.888(4) Å, b = 9.304(2) Å, and c = 4.7804(10) Å. The structural features of the orthorhombic polymorph of tri(p-tolyl)boroxine are quite different from a previously reported monoclinic (Beckett et al.,J. Organomet. Chem.1997, 535, 33–41) but similar to that of tri(p-bromophenyl)boroxine (Avent et al., Coll. Czech. Chem. Commun.2002, 67, 1051–1060). Obviously, electronic effects of substituents on the boron centers influence the structural features of substituted boroxines less than discussed in earlier reports (Boese et al., Angew. Chem.1987, 99, 239–241).

Key words

Boroxine Lewis acidity polymorphism intermolecular B–O distances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brock, C.P.; Minton, R.P.; Niedenzu, K. Acta Cryst. C 1987, C43, 1775–1779.CrossRefGoogle Scholar
  2. 2.
    Beckett, M.A.; Brassington, D.S.; Owen, P.; Hursthouse, M.B.; Light, M.E.; Malik, K.M.A.; Varma, K.S. J. Organomet. Chem. 1999, 585, 7–11.CrossRefGoogle Scholar
  3. 3.
    Alcarez, G.; Euzenat, L.; Mongin, O.; Katan, C.; Ledoux, I.; Zyss, J.; Blanchard-Desce, M.; Vaultier, M. Chem. Commun 2003, 2766–2767.Google Scholar
  4. 4.
    Boese, R.; Polk, M.; Bläser, D. Angew. Chem. 1987, 99, 239–241.Google Scholar
  5. 5.
    Beckett, M.A.; Strickland, G.C.; Varma, K.S.; Hibbs, D.E.; Hursthouse, M.B.; Malik, K.M.A. J. Organomet. Chem. 1997, 535, 33–41.CrossRefGoogle Scholar
  6. 6.
    Haberecht, M.C.; Heilmann, J.B.; Haghiri, A.; Bolte, M.; Bats, J.W.; Lerner, H.-W.; Holthausen, M.C.; Wagner, M. Z. Anorg. Allg. Chem. 2004, 630, 904–913.CrossRefGoogle Scholar
  7. 7.
    Sheldrick, G.M. Acta Cryst. A 1990, 46, 467.CrossRefGoogle Scholar
  8. 8.
    Sheldrick, G.M. SHELXL-97, Program for Crystal Structure Refinement; University of Göttingen: Germany, 1997.Google Scholar
  9. 9.
    Avent, A.G.; Lawrence, S.F.; Meehan, M.M.; Russell, T.G.; Spalding, T.R. Coll. Czech. Chem. Commun 2002, 67, 1051–1060.CrossRefGoogle Scholar
  10. 10.
    Anulewicz-Ostrowska, R.; Lulinski, S.; Serwatowski, J.; Suwinska, K. Inorg. Chem. 2000, 39, 5763–5767.CrossRefPubMedGoogle Scholar
  11. 11.
    Bats, J.W.; Ma, K.; Wagner, M. Acta Cryst. C 2002, C58, m129–m132.CrossRefGoogle Scholar
  12. 12.
    Hollemann, A.F.; Wiberg, E. Hollemann-Wiberg: Lehrbuch der Anorganischen Chemie; de Gruyter: Berlin, 1995; p 1842.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Monika C. Haberecht
    • 1
  • Michael Bolte
    • 1
  • Matthias Wagner
    • 1
  • Hans-Wolfram Lerner
    • 1
  1. 1.Institut für Anorganische Chemie, Johann Wolfgang Goethe-Universität Frankfurt am MainFrankfurtGermany

Personalised recommendations