Comparative studies on the interaction between biogenic polyamines and bovine intestinal alkaline phosphatases: spectroscopic and theoretical approaches

  • Pegah Salehian
  • Behzad ShareghiEmail author
  • Mansoore Hosseini-Koupaei
Original Paper


In this work, the effect of two organic polyamines (spermine and spermidine) on the fluorescence intensity and activity of bovine intestinal alkaline phosphatase (BIALP) are investigated. The interaction of BIALP with spermine and spermidine was studied in a diethanolamine buffer with 0.5 mM magnesium chloride (pH 9.8) and at two temperatures by using the fluorescence quenching method. Furthermore, the activity of enzyme was studied using UV–Vis spectrophotometry in a diethanolamine buffer with 0.5 mM magnesium chloride, at 37 °C, in the absence and presence of different concentrations of each polyamine (0–5 mM). It was demonstrated that both polyamines quenched the intrinsic fluorescence of BIALP by the static quenching process. Based on these results, the values of the binding site for both polyamines were close to each other and decreased by increasing the temperature. The calculated thermodynamic parameters (ΔH° < 0 and ΔS° < 0) also showed that the acting forces in the formation of the complex between BIALP and polyamines were hydrogen bonds and van der Waals forces with an overall favorable Gibbs free energy change (∆G° < 0). In addition, kinetic studies revealed that these polyamines enhanced the enzyme activity of BIALP in a concentration-dependent manner. This result also indicated that spermine had more of an effect on BIALP activity in the same condition. Also, molecular docking as well as thermodynamic parameters showed that hydrogen bonds and van der Waals forces played an important role in the stabilization of BIALP–polyamine complexes.


Bovine intestinal alkaline phosphatase Polyamines Enzyme activity Intrinsic fluorescence Molecular docking 



This study was funded by the University of Shahrekord, Shahrekord, Iran

Compliance with ethical standards

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Thomas, T., Tajmir-Riahi, H., Thomas, T.: Polyamine–DNA interactions and development of gene delivery vehicles. Amino Acids 48(10), 2423–2431 (2016)CrossRefGoogle Scholar
  2. 2.
    Chanphai, P., Thomas, T., Tajmir-Riahi, H.: Conjugation of biogenic and synthetic polyamines with serum proteins: a comprehensive review. Int. J. Biol. Macromol. 92, 515–522 (2016)CrossRefGoogle Scholar
  3. 3.
    Chowhan, R.K., Singh, L.R.: Polyamines in modulating protein aggregation. J. Proteins Proteomics 3(2), 141–150 (2013)Google Scholar
  4. 4.
    Kudou, M., Shiraki, K., Fujiwara, S., Imanaka, T., Takagi, M.: Prevention of thermal inactivation and aggregation of lysozyme by polyamines. Eur. J. Biochem. 270(22), 4547–4554 (2003)CrossRefGoogle Scholar
  5. 5.
    Oshima, T., Hamasaki, N., Senshu, M., Kakinuma, K., Kuwajima, I.: A new naturally occurring polyamine containing a quaternary ammonium nitrogen. J. Biol. Chem. 262(25), 11979–11981 (1987)Google Scholar
  6. 6.
    Coleman, J.E.: Structure and mechanism of alkaline phosphatase. Annu. Rev. Biophys. Biomol. Struct. 21(1), 441–483 (1992)Google Scholar
  7. 7.
    McComb, R.B., Bowers Jr, G.N., Posen, S.: Alkaline phosphatase. Springer Science & Business Media, New York (2013)Google Scholar
  8. 8.
    Kim, E.E., Wyckoff, H.W.: Reaction mechanism of alkaline phosphatase based on crystal structures: two-metal ion catalysis. J. Mol. Biol. 218(2), 449–464 (1991)CrossRefGoogle Scholar
  9. 9.
    Zalatan, J.G., Fenn, T.D., Herschlag, D.: Comparative enzymology in the alkaline phosphatase superfamily to determine the catalytic role of an active-site metal ion. J. Mol. Biol. 384(5), 1174–1189 (2008)CrossRefGoogle Scholar
  10. 10.
    Kozlenkov, A., Manes, T., Hoylaerts, M.F., Millán, J.L.: Function assignment to conserved residues in mammalian alkaline phosphatases. J. Biol. Chem. 277(25), 22992–22999 (2002)CrossRefGoogle Scholar
  11. 11.
    Bock, J.L.: The new era of automated immunoassay. Am. J. Clin. Pathol. 113(5), 628–646 (2000)CrossRefGoogle Scholar
  12. 12.
    Jablonski, E., Moomaw, E.W., Tullis, R.H., Ruth, J.L.: Preparation of oligodeoxynucleotide-alkaline phosphatase conjugates and their use hybridization probes. Nucleic Acids Res. 14(15), 6115–6128 (1986)CrossRefGoogle Scholar
  13. 13.
    Christenson, R.H.: Biochemical markers of bone metabolism: an overview. Clin. Biochem. 30(8), 573–593 (1997)CrossRefGoogle Scholar
  14. 14.
    Attri, P., Venkatesu, P., Lee, M.-J.: Influence of osmolytes and denaturants on the structure and enzyme activity of α-chymotrypsin. J. Phys. Chem. B. 114(3), 1471–1478 (2010)CrossRefGoogle Scholar
  15. 15.
    Venkatesu, P., Lee, M.-J.: Lin, H.-m.: Trimethylamine N-oxide counteracts the denaturing effects of urea or GdnHCl on protein denatured state. Arch. Biochem. Biophys. 466(1), 106–115 (2007)CrossRefGoogle Scholar
  16. 16.
    Rezaei-Ghaleh, N., Ebrahim-Habibi, A., Moosavi-Movahedi, A.A., Nemat-Gorgani, M.: Effect of polyamines on the structure, thermal stability and 2, 2, 2-trifluoroethanol-induced aggregation of α-chymotrypsin. Int. J. Biol. Macromol. 41(5), 597–604 (2007)CrossRefGoogle Scholar
  17. 17.
    Kurinomaru, T., Kameda, T., Shiraki, K.: Effects of multivalency and hydrophobicity of polyamines on enzyme hyperactivation of α-chymotrypsin. J. Mol. Catal. B Enzym. 115, 135–139 (2015)CrossRefGoogle Scholar
  18. 18.
    Hamada, H., Takahashi, R., Noguchi, T., Shiraki, K.: Differences in the effects of solution additives on heat-and refolding-induced aggregation. Biotechnol. Prog. 24(2), 436–443 (2008)CrossRefGoogle Scholar
  19. 19.
    Zhao, X., Hao, F., Lu, D., Liu, W., Zhou, Q., Jiang, G.: Influence of the surface functional group density on the carbon-nanotube-induced α-chymotrypsin structure and activity alterations. ACS Appl. Mater. Interfaces 7(33), 18880–18890 (2015)CrossRefGoogle Scholar
  20. 20.
    Liu, X., Shang, L., Jiang, X., Dong, S., Wang, E.: Conformational changes of β-lactoglobulin induced by anionic phospholipid. Biophys. Chem. 121(3), 218–223 (2006)CrossRefGoogle Scholar
  21. 21.
    Viseu, M.I., Carvalho, T.I., Costa, S.M.: Conformational transitions in β-lactoglobulin induced by cationic amphiphiles: equilibrium studies. Biophys. J. 86(4), 2392–2402 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Farhadian, S., Shareghi, B., Saboury, A.A.: Exploring the thermal stability and activity of alpha-chymotrypsin in the presence of spermine. J Biomol Struct Dyn 35(2), 435–448 (2017)Google Scholar
  23. 23.
    Shpigelman, A., Israeli, G., Livney, Y.D.: Thermally-induced protein–polyphenol co-assemblies: beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG. Food Hydrocoll. 24(8), 735–743 (2010)CrossRefGoogle Scholar
  24. 24.
    Mi, R., Hu, Y.-J., Fan, X.-Y., Ouyang, Y., Bai, A.-M.: Exploring the site-selective binding of jatrorrhizine to human serum albumin: Spectroscopic and molecular modeling approaches. Spectrochim. Acta A Mol. Biomol. Spectrosc. 117, 163–169 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Li, D., Ji, B., Jin, J.: Spectrophotometric studies on the binding of vitamin C to lysozyme and bovine liver catalase. J. Lumin. 128(9), 1399–1406 (2008)CrossRefGoogle Scholar
  26. 26.
    Taheri-Kafrani, A., Asgari-Mobarakeh, E., Bordbar, A.-K., Haertlé, T.: Structure–function relationship of β-lactoglobulin in the presence of dodecyltrimethyl ammonium bromide. Colloids Surf. B: Biointerfaces 75(1), 268–274 (2010)CrossRefGoogle Scholar
  27. 27.
    Murphy, J.E., Tibbitts, T.T., Kantrowitz, E.R.: Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases. J. Mol. Biol. 253(4), 604–617 (1995)CrossRefGoogle Scholar
  28. 28.
    Guex, N., Peitsch, M.C.: SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18(15), 2714–2723 (1997)CrossRefGoogle Scholar
  29. 29.
    Sun, Y., Wei, S., Yin, C., Liu, L., Hu, C., Zhao, Y., Ye, Y., Hu, X., Fan, J.: Synthesis and spectroscopic characterization of 4-butoxyethoxy-N-octadecyl-1, 8-naphthalimide as a new fluorescent probe for the determination of proteins. Bioorg. Med. Chem. Lett. 21(12), 3798–3804 (2011)CrossRefGoogle Scholar
  30. 30.
    Pan, B., Liu, Y., Xiao, D., Wu, F., Wu, M., Zhang, D., Xing, B.: Quantitative identification of dynamic and static quenching of ofloxacin by dissolved organic matter using temperature-dependent kinetic approach. Environ. Pollut. 161, 192–198 (2012)CrossRefGoogle Scholar
  31. 31.
    Xue, J.-J., Chen, Q.-Y.: The interaction between ionic liquids modified magnetic nanoparticles and bovine serum albumin and the cytotoxicity to HepG-2 cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 120, 161–166 (2014)CrossRefGoogle Scholar
  32. 32.
    Wang, Y., Zhang, G., Wang, L.: Interaction of prometryn to human serum albumin: insights from spectroscopic and molecular docking studies. Pestic. Biochem. Physiol. 108, 66–73 (2014)CrossRefGoogle Scholar
  33. 33.
    Vignesh, G., Arunachalam, S., Vignesh, S., James, R.A.: BSA binding and antimicrobial studies of branched polyethyleneimine–copper (II) bipyridine/phenanthroline complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 96, 108–116 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Zhang, M.-F., Xu, Z.-Q., Ge, Y.-S., Jiang, F.-L., Liu, Y.: Binding of fullerol to human serum albumin: spectroscopic and electrochemical approach. J. Photochem. Photobiol. B 108, 34–43 (2012)Google Scholar
  35. 35.
    Tabassum, S., Al-Asbahy, W.M., Afzal, M., Arjmand, F.: Synthesis, characterization and interaction studies of copper based drug with human serum albumin (HSA): spectroscopic and molecular docking investigations. J. Photochem. Photobiol. B Biol. 114, 132–139 (2012)CrossRefGoogle Scholar
  36. 36.
    Koupaei, M.H., Shareghi, B., Saboury, A.A., Davar, F., Semnani, A., Evini, M.: Green synthesis of zinc oxide nanoparticles and their effect on the stability and activity of proteinase K. RSC Adv. 6(48), 42313–42323 (2016)CrossRefGoogle Scholar
  37. 37.
    Igarashi, K., Kashiwagi, K.: Polyamines: mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 271(3), 559–564 (2000)CrossRefGoogle Scholar
  38. 38.
    Saeidifar, M., Mansouri-Torshizi, H., Saboury, A.A.: Biophysical study on the interaction between two palladium (II) complexes and human serum albumin by multispectroscopic methods. J. Lumin. 167, 391–398 (2015)CrossRefGoogle Scholar
  39. 39.
    Chen, C., Xiang, B., Yu, L., Wang, T., Zhao, B.: The application of two-dimensional fluorescence correlation spectroscopy on the interaction between bovine serum albumin and paeonolum in the presence of Fe (III). Spectrosc. Lett. 41(8), 385–392 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Toprak, M., Aydın, B.M., Arık, M., Onganer, Y.: Fluorescence quenching of fluorescein by merocyanine 540 in liposomes. J. Lumin. 131(11), 2286–2289 (2011)CrossRefGoogle Scholar
  41. 41.
    Suryawanshi, V.D., Anbhule, P.V., Gore, A.H., Patil, S.R., Kolekar, G.B.: A spectral deciphering the perturbation of model transporter protein (HSA) by antibacterial pyrimidine derivative: pharmacokinetic and biophysical insights. J. Photochem. Photobiol. B 118, 1–8 (2013)Google Scholar
  42. 42.
    Choi, J.-M., Han, S.-S., Kim, H.-S.: Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol. Adv. 33(7), 1443–1454 (2015)CrossRefGoogle Scholar
  43. 43.
    Bisswanger, H.: Enzyme Kinetics: Principles and Methods. John Wiley & Sons, Weinheim (2017)Google Scholar
  44. 44.
    Segel, I.H., Segel, A.H.: Biochemical Calculations: How to Solve Mathematical Problems in General Biochemistry. Wiley, New York (1976)Google Scholar
  45. 45.
    Flynn, A., Jones, D., Man, E., Shipman, S., Tung, S.: The effects of pH on Type VII-NA bovine intestinal mucosal alkaline phosphatase activity. J. Exp. Microbiol. Immunol. 2, 50–56 (2002)Google Scholar
  46. 46.
    Gao, W.-W., Zhang, F.-X., Zhang, G.-X., Zhou, C.-H.: Key factors affecting the activity and stability of enzymes in ionic liquids and novel applications in biocatalysis. Biochem. Eng. J. 99, 67–84 (2015)CrossRefGoogle Scholar
  47. 47.
    Dean, R.L.: Kinetic studies with alkaline phosphatase in the presence and absence of inhibitors and divalent cations. Biochem. Mol. Biol. Educ. 30(6), 401–407 (2002)CrossRefGoogle Scholar
  48. 48.
    Hu, X., Yu, Z., Liu, R.: Spectroscopic investigations on the interactions between isopropanol and trypsin at molecular level. Spectrochim. Acta A Mol. Biomol. Spectrosc. 108, 50–54 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    Hosseini-Koupaei, M., Shareghi, B., Saboury, A.A., Davar, F.: Molecular investigation on the interaction of spermine with proteinase K by multispectroscopic techniques and molecular simulation studies. Int. J. Biol. Macromol. 94, 406–414 (2017)CrossRefGoogle Scholar
  50. 50.
    Hosseini-Koupaei, M., Shareghi, B., Saboury, A.A., Davar, F., Raisi, F.: The effect of spermidine on the structure, kinetics and stability of proteinase K: spectroscopic and computational approaches. RSC Adv. 6(107), 105476–105486 (2016)CrossRefGoogle Scholar
  51. 51.
    Adinarayana, K., Devi, R.K.: Protein-ligand interaction studies on 2, 4, 6-trisubstituted triazine derivatives as anti-malarial DHFR agents using AutoDock. Bioinformation 6(2), 74–77 (2011)CrossRefGoogle Scholar
  52. 52.
    Bowers, G.N., McComb, R.B., Christensen, R., Schaffer, R.: High-purity 4-nitrophenol: purification, characterization, and specifications for use as a spectrophotometric reference material. Clin. Chem. 26(6), 724–729 (1980)Google Scholar
  53. 53.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990)CrossRefGoogle Scholar
  54. 54.
    Sali, A., Blundell, T.: Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol. 234(3), 779–815 (1993)CrossRefGoogle Scholar
  55. 55.
    SchuÈttelkopf, A.W., Van Aalten, D.M.: PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60(8), 1355–1363 (2004)CrossRefGoogle Scholar
  56. 56.
    Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comb. Chem. 30(16), 2785–2791 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Pegah Salehian
    • 1
  • Behzad Shareghi
    • 1
    Email author
  • Mansoore Hosseini-Koupaei
    • 1
    • 2
  1. 1.Department of Biology, Faculty of ScienceUniversity of ShahrekordShahrekordIran
  2. 2.Department of BiologyNaghshe Jahan Institute of Higher EducationIsfahanIran

Personalised recommendations