Advertisement

Journal of Biological Physics

, Volume 44, Issue 3, pp 433–448 | Cite as

Changes of cationic transport in AtCAX5 transformant yeast by electromagnetic field environments

  • Munmyong Choe
  • Won Choe
  • Songchol Cha
  • Imshik Lee
Original Paper

Abstract

The electromagnetic field (EMF) is newly considered as an exogenous environmental stimulus that is closely related to ion transportation on the cellular membrane, maintaining the internal ionic homeostasis. Cation transports of Ca2+ and other metal ions, Cd2+, Zn2+, and Mn2+were studied in terms of the external Ca2+ stress, [Ca2+]ext, and exposure to the physical EMF. A specific yeast strain K667 was used for controlling CAX5 (cation/H+ exchanger) expression. Culture samples were exposed to 60 Hz, 0.1 mT sinusoidal or square magnetics waves, and intracellular cations of each sample were measured and analyzed. AtCAX5 transformant yeast grew normally under the metallic stress. However, the growth of the control group was significantly inhibited under the same cation concentration; 60 Hz and 0.1 mT magnetic field enhanced intracellular cation concentrations significantly as exposure time increased both in the AtCAX5 transformed yeast and in the control group. However, the AtCAX5-transformed yeast showed higher concentration of the intracellular cations than the control group under the same exposure EMF. AtCAX5-transformed yeasts displayed an increment in [Ca2+]int, [K+]int, [Na+]int, and [Zn2+]int concentration under the presence of both sinusoidal and square-waved EMF stresses compared to the control group, which shows that AtCAX5 expressed in the vacuole play an important role in maintaining the homeostasis of intracellular cations. These findings could be utilized in the cultivation of the crops which were resistant to excessive exogenous ions or in the production of biomass containing a large proportion of ions for nutritional food or in the bioremediation process in metal-polluted environments.

Keywords

Cation transportation Extremely low frequency electromagnetic field (ELF-EMF) Saccharomyces cerevisiae K667 AtCAX5 transformant yeast 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Lacy-Hulbert, A., Metcalfe, J.C., Hesketh, R.: Biological responses to electromagnetic fields. FASEB J. 12, 395–420 (1998)CrossRefGoogle Scholar
  2. 2.
    Walleczek, J.: Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J. 6, 3177–3185 (1992)CrossRefGoogle Scholar
  3. 3.
    Safarik, I., Maderova, Z., Pospiskova, K., Baldikova, E., Horska, K., Safarikova, L.: Magnetically responsive yeast cells: methods of preparation and applications. Yeast 32, 227–237 (2015)Google Scholar
  4. 4.
    Fanelli, C., Coppola, S., Barone, R.: Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ influx. FASEB J. 13, 95–102 (1999)CrossRefGoogle Scholar
  5. 5.
    Pazur, A., Rassadine, V.: Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana. PMC Plant Biol. 9, 47 (2009)CrossRefGoogle Scholar
  6. 6.
    Dubyak, G.R.: Ion homeostasis, channels, and transporters: an update on cellular mechanisms. Adv Physiol Edu 28, 143–154 (2004)CrossRefGoogle Scholar
  7. 7.
    Karabakhtsian, R., Broude, N., Shalts, N., Kochlatyi, S., Goodman, R., Henderson, A.S.: Calcium is necessary in the cell response to EM fields. FEBS Lett. 349, 1–6 (1994)CrossRefGoogle Scholar
  8. 8.
    Lindström, E., Lindström, P., Berglund, A., Lundgren, E., Mild, K.H.: Intracellular calcium oscillations in a T-cell line after exposure to extremely-low-frequency magnetic fields with variable frequencies and flux densities. Bioelectromagnetics 16, 41–47 (1995)CrossRefGoogle Scholar
  9. 9.
    Barbier, E., Veyret, B., Dufy, B.: Stimulation of Ca2+ influx in rat pituitary cells under exposure to a 50-Hz magnetic field. Bioelectromagnetics 17, 303–311 (1996)CrossRefGoogle Scholar
  10. 10.
    Grassi, C., D’Ascenzo, M., Torsello, A., Martinotti, G., Wolf, F., Cittadini, A., Battista, G.A.: Effects of 50-Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35, 307–315 (2004)CrossRefGoogle Scholar
  11. 11.
    Craviso, G.L., Poss, J., Lanctot, C., Lundback, S.S., Chatterjee, I., Publicover, N.G.: Intracellular calcium activity in isolated bovine adrenal chromaffin cells in the presence and absence of 60-Hz magnetic fields. Bioelectromagnetics 23, 557–567 (2002)CrossRefGoogle Scholar
  12. 12.
    Mäser, P., Thomine, S., Schroeder, J.I., Ward, J.M., Hirschi, K., Sze, H., Talke, I.N., Amtmann, A., Maathuis, F.J.M., Sanders, D., Harper, J.F., Tchieu, J., Gribskov, M., Persans, M.W., Salt, D.E., Kim, S.A., Guerinot, M.L.: Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 126, 1646–1667 (2001)CrossRefGoogle Scholar
  13. 13.
    Gadsby, D.C.: Ion channels versus ion pumps: the principal difference, in principle. Nat. Rev. Mol. Cell Biol. 10, 344–352 (2009)Google Scholar
  14. 14.
    Manohar, M., Shigaki, T., Hirschi, K.D.: Plant cation/H+ exchangers (CAXs): biological functions and genetic manipulations. Plant Biol. 13, 561–569 (2011)Google Scholar
  15. 15.
    Emery, L., Whelam, S., Hirschi, K.D., Pittman, J.K.: Protein phylogenetic analysis of Ca2+/Cation antiporters and insights into their evolution in plants. Front Plant Sci. 13, 1–19.  https://doi.org/10.3389/fpls.2012.00001
  16. 16.
    Utsunomiya, T., Yamane, Y.-I., Watanabe, M., Sasaki, K.: Stimulation of porphyrin production by application of an external magnetic field to a photosynthetic bacterium, Rhodobacter sphaeroides. J. Biosci. Bioeng. 95, 401–404 (2003)CrossRefGoogle Scholar
  17. 17.
    Cellini, L., Grande, R., Campli, E.D., Bartolomeo, S.D., Giulio, M.D., Robuffo, I., Trubiani, O., Mariggio, M.A.: Bacterial response to the exposure of 50-Hz electromagnetic fields. Bioelectromagnetics 29, 302–311 (2008)CrossRefGoogle Scholar
  18. 18.
    Fiedler, U., Grobner, U., Berg, H.: Electrostimulation of yeast proliferation. Bioelectrochem. Bioenerg. 38, 423–425 (1995)CrossRefGoogle Scholar
  19. 19.
    Nakanishi, K., Tokuda, H., Soga, T., Yoshinaga, T., Takeda, M.: Effect of electric current on growth and alcohol production by yeast cells. J. Ferment. Bioeng. 85, 250–253 (1998)CrossRefGoogle Scholar
  20. 20.
    Perez, V., Reyes, A., Justo, O., Alvarez, D.: Bioreactor coupled with electromagnetic field generator: effects of extremely low frequency electromagnetic fields on ethanol production by Saccharomyces cerevisiae. Biotechnol. Prog. 23, 1091–1094 (2007)Google Scholar
  21. 21.
    Marron, M.T., Goodman, E.M., Greenebaum, B., Tipnis, P.: Effects of sinusoidal 60-Hz electric and magnetic fields on ATP and oxygen levels in the slime mold, Physarumpolycephalum. Bioelectromagnetics 7, 307–314 (1986)CrossRefGoogle Scholar
  22. 22.
    Lin, K.-W., Yang, C.-J., Lian, H.-Y., Cai, P.: Exposure of ELF-EMF and RF-EMF increase the rate of glucose transport and TCA cycle in budding yeast. Front. Microbiol. 7, 1378 (2016).  https://doi.org/10.3389/fmicb.2016.01378 Google Scholar
  23. 23.
    Novak, J., Strašák, L., Fojt, L., Slaninová, I., Vetterl, V.: Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae. Bioelectrochemistry 70, 115–121 (2007)CrossRefGoogle Scholar
  24. 24.
    Wolff, S.A., Coelho, L.H., Karoliussen, I., Jost, A.-I.K.: Effects of the extraterrestrial environment on plants: recommendations for future space experiments for the MELiSSA higher plant compartment. Life 4, 189–204 (2014)CrossRefGoogle Scholar
  25. 25.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011)CrossRefGoogle Scholar
  26. 26.
    Krogh, A., Larsson, B.: von-Heijne, G., Sonnhammer, E.L.: predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001)CrossRefGoogle Scholar
  27. 27.
    Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990)CrossRefGoogle Scholar
  28. 28.
    Cunningham, K.W., Fink, G.R.: Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ATPases in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2226–2237 (1996)Google Scholar
  29. 29.
    Gietz, R.D., Schiestl, R.H., Willems, A.R., Woods, R.A.: Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355–360 (1995)CrossRefGoogle Scholar
  30. 30.
    Kawai, S., Phan, T.A., Kono, E., Harada, K., Okai, C., Fukusaki, E.: Transcriptional and metabolic response in yeast Saccharomyces cerevisiae cells during polyethylene glycol-dependent transformation. J. Basic Microbiol. 49, 73–81 (2009)CrossRefGoogle Scholar
  31. 31.
    Mulet, J.M., Leube, M.P., Kron, S.J., Rios, G., Fink, G.R., Serrano, R.: A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transporter. Mol. Cell. Biol. 19, 3328–3337 (1999)CrossRefGoogle Scholar
  32. 32.
    Pittsman, J.K.: Vacuolar Ca2+ uptake. Cell Calcium 50, 139–146 (2011)CrossRefGoogle Scholar
  33. 33.
    Nevzgodina, L.V.: Fundamentals for the assessment of risks from environmental radiation. In: Chromosomal Aberrations as a Biomarker for Cosmic Radiation (NATO Science Series), pp. 203–208. Springer, Houten (1999)Google Scholar
  34. 34.
    Ahmad, M., Galland, P., Ritz, T., Wiltschko, R., Wiltschko, W.: Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta 225, 615–624 (2007)CrossRefGoogle Scholar
  35. 35.
    Wolff, S.A., Coelho, L.H., Zabrodina, M., Brinckmann, E., Kittang, A.I.: Plant mineral nutrition, gas exchange and photosynthesis in space: a review. Adv. Space Res. 51, 465–475 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Hakala-Yatkin, M., Sarvikas, P., Paturi, P., Mantysaari, M., Mattila, H., Tyystjarvi, T., Nedbal, L., Tyystjarvi, E.: Magnetic field protects plants against high light by slowing down production of singlet oxygen. Physiol. Plant. 142, 26–34 (2011)CrossRefGoogle Scholar
  37. 37.
    Ivey, D.M., Guffanti, A.A., Zemsky, J., Pinner, E., Karpel, R., Padan, E., Schuldiner, S., Krulwich, T.W.: Cloning and characterization of a putative Ca2+/H+ antiporter gene from Escherichia coli upon functional complementation of Na+/H+ antiporter-deficient strains by the overexpressed gene. J. Biol. Chem. 268, 11296–11303 (1993)Google Scholar
  38. 38.
    Olivier, C., Maria, N.A., Marina, L., Maria, P.R., Kees, V.: Vacuolar cation/H+antiporters of Saccharomyces cerevisiae. J. Biol. Chem. 285, 33914–33922 (2010)CrossRefGoogle Scholar
  39. 39.
    Panagopoulos, D.J., Karabarbounis, A., Margaritisa, L.H.: Mechanism for action of electromagnetic fields on cells. BBRC 298, 95–102 (2002)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.R & D CenterPyongyang University of Science & TechnologyPyongyangDemocratic People’s Republic of Korea
  2. 2.Institute of PhysicsNankai UniversityTianjinChina

Personalised recommendations