Advertisement

Journal of Biological Physics

, Volume 44, Issue 3, pp 419–431 | Cite as

Is a constant low-entropy process at the root of glycolytic oscillations?

  • Henrik Seir Thoke
  • Lars F. Olsen
  • Lars Duelund
  • R. P. Stock
  • Thomas Heimburg
  • Luis A. Bagatolli
Original Paper

Abstract

We measured temporal oscillations in thermodynamic variables such as temperature, heat flux, and cellular volume in suspensions of non-dividing yeast cells which exhibit temporal glycolytic oscillations. Oscillations in these variables have the same frequency as oscillations in the activity of intracellular metabolites, suggesting strong coupling between them. These results can be interpreted in light of a recently proposed theoretical formalism in which isentropic thermodynamic systems can display coupled oscillations in all extensive and intensive variables, reminiscent of adiabatic waves. This interpretation suggests that oscillations may be a consequence of the requirement of living cells for a constant low-entropy state while simultaneously performing biochemical transformations, i.e., remaining metabolically active. This hypothesis, which is in line with the view of the cellular interior as a highly structured and near equilibrium system where energy inputs can be low and sustain regular oscillatory regimes, calls into question the notion that metabolic processes are essentially dissipative.

Keywords

Glycolytic oscillations Isentropic process Temperature oscillations Onsager’s theory Association-induction hypothesis 

Notes

Acknowledgements

HST and LFO thank the Danish Council for Independent Research|Natural Sciences for support. LAB is a member of the Argentinian Research Council (CONICET) research career. The authors thank Anita Lunding for skilled technical assistance.

Funding

This study was funded by a grant from the Danish Council for Independent Research|Natural Sciences (grant # DFF - 4002-00465).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10867_2018_9499_MOESM1_ESM.docx (311 kb)
ESM 1 (DOCX 311 kb)

References

  1. 1.
    Duysens, L.N., Amesz, J.: Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochim. Biophys. Acta 24(1), 19–26 (1957)CrossRefGoogle Scholar
  2. 2.
    Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  3. 3.
    Richter, P.H., Ross, J.: Concentration oscillations and efficiency: glycolysis. Science 211(4483), 715–717 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    Chandra, F.A., Buzi, G., Doyle, J.C.: Glycolytic oscillations and limits on robust efficiency. Science 333(6039), 187–192 (2011).  https://doi.org/10.1126/science.1200705 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cortassa, S., Aon, M.A., Westerhoff, H.V.: Linear nonequilibrium thermodynamics describes the dynamics of an autocatalytic system. Biophys. J. 60(4), 794–803 (1991).  https://doi.org/10.1016/S0006-3495(91)82114-2 CrossRefGoogle Scholar
  6. 6.
    Selkov, E.E.: Stabilization of energy charge, generation of oscillations and multiple steady states in energy metabolism as a result of purely stoichiometric regulation. Eur. J. Biochem. 59, 151–157 (1975)CrossRefGoogle Scholar
  7. 7.
    Lokta, A.J.: Contribution to the theory of periodic reactions. J. Phys. Chem. 14(3), 271–274 (1910)Google Scholar
  8. 8.
    Teusink, B., Larsson, C., Diderich, J., Richard, P., van Dam, K., Gustafsson, L., Westerhoff, H.V.: Synchronized heat flux oscillations in yeast cell populations. J. Biol. Chem. 271(40), 24442–24448 (1996)CrossRefGoogle Scholar
  9. 9.
    Thoke, H.S., Tobiesen, A., Brewer, J., Hansen, P.L., Stock, R.P., Olsen, L.F., Bagatolli, L.A.: Tight coupling of metabolic oscillations and intracellular water dynamics in Saccharomyces cerevisiae. PLoS One 10(2), e0117308 (2015).  https://doi.org/10.1371/journal.pone.0117308 CrossRefGoogle Scholar
  10. 10.
    Ytting, C.K., Fuglsang, A.T., Hiltunen, J.K., Kastaniotis, A.J., Ozalp, V.C., Nielsen, L.J., Olsen, L.F.: Measurements of intracellular ATP provide new insight into the regulation of glycolysis in the yeast Saccharomyces cerevisiae. Integr. Biol. (Camb) 4(1), 99–107 (2012).  https://doi.org/10.1039/c1ib00108f
  11. 11.
    Dodd, B.J.T., Kralj, J.M.: Live cell imaging reveals pH oscillations in Saccharomyces cerevisiae during metabolic transitions. Sci. Rep. 7(1), 13922 (2017).  https://doi.org/10.1038/s41598-017-14382-0 ADSCrossRefGoogle Scholar
  12. 12.
    Thoke, H.S., Thorsteinsson, S., Stock, R.P., Bagatolli, L.A., Olsen, L.F.: The dynamics of intracellular water constrains glycolytic oscillations in Saccharomyces cerevisiae. Sci. Rep. 7(1), 16250 (2017).  https://doi.org/10.1038/s41598-017-16442-x ADSCrossRefGoogle Scholar
  13. 13.
    Ellis, R.J.: Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26(10), 597–604 (2001)CrossRefGoogle Scholar
  14. 14.
    Zimmerman, S.B., Trach, S.O.: Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 222(3), 599–620 (1991)CrossRefGoogle Scholar
  15. 15.
    Knull, H., Minton, A.P.: Structure within eukaryotic cytoplasm and its relationship to glycolytic metabolism. Cell Biochem. Funct. 14(4), 237–248 (1996).  https://doi.org/10.1002/cbf.698 CrossRefGoogle Scholar
  16. 16.
    Tros, M., Zheng, L., Hunger, J., Bonn, M., Bonn, D., Smits, G.J., Woutersen, S.: Picosecond orientational dynamics of water in living cells. Nat. Commun. 8(1), 904 (2017).  https://doi.org/10.1038/s41467-017-00858-0 ADSCrossRefGoogle Scholar
  17. 17.
    Davidson, R.M., Lauritzen, A., Seneff, S.: Biological water dynamics and entropy: a biophysical origin of cancer and other diseases. Entropy 15, 3822–3876 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Fels, J., Orlov, S.N., Grygorczyk, R.: The hydrogel nature of mammalian cytoplasm contributes to osmosensing and extracellular pH sensing. Biophys. J. 96(10), 4276–4285 (2009).  https://doi.org/10.1016/j.bpj.2009.02.038 ADSCrossRefGoogle Scholar
  19. 19.
    Ling, G.N.: Nano-protoplasm: the ultimate unit of life. Physiol. Chem. Phys. Med. NMR 39(2), 111–234 (2007)MathSciNetGoogle Scholar
  20. 20.
    Lu, C., Prada-Gracia, D., Rao, F.: Structure and dynamics of water in crowded environments slows down peptide conformational changes. J. Chem. Phys. 141(4), 045101 (2014).  https://doi.org/10.1063/1.4891465 ADSCrossRefGoogle Scholar
  21. 21.
    Onsager, L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Onsager, L.: Reciprocal relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1931)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Heimburg, T.: Linear nonequilibrium thermodynamics of reversible periodic processes and chemical oscillations. Phys. Chem. Chem. Phys. 19(26), 17331–17341 (2017).  https://doi.org/10.1039/c7cp02189e CrossRefGoogle Scholar
  24. 24.
    Ling, G.N.: A Physical Theory of the Living State: the Association-Induction Hypothesis. Blaisdell Publishing Co, A Division of Random House, Inc., New York (1962)Google Scholar
  25. 25.
    Jaeken, L., Matveev, V.V.: Coherent behaviour and the bound state of water and K+ imply another model of bioenergetics: negative entropy instead of high energy bonds. The Open Biochemistry Journal 6, 139–159 (2012)Google Scholar
  26. 26.
    Kondepudi, D., Prigogine, I.: Modern Thermodynamics. From Heat Engines to Dissipative Structures. John Wiley & Sons Ltd,. Chichester (1998)Google Scholar
  27. 27.
    Einstein, A.: Theory of opalescence of homogenous liquids and liquid mixtures near critical conditions. Ann. Phys. 33, 1275–1298 (1910)CrossRefGoogle Scholar
  28. 28.
    Poulsen, A.K., Lauritsen, F.R., Olsen, L.F.: Sustained glycolytic oscillations--no need for cyanide. FEMS Microbiol. Lett. 236(2), 261–266 (2004).  https://doi.org/10.1016/j.femsle.2004.05.044 Google Scholar
  29. 29.
    Schroder, T.D., Ozalp, V.C., Lunding, A., Jernshoj, K.D., Olsen, L.F.: An experimental study of the regulation of glycolytic oscillations in yeast. FEBS J. 280(23), 6033–6044 (2013).  https://doi.org/10.1111/febs.12522 CrossRefGoogle Scholar
  30. 30.
    De Monte, S., d'Ovidio, F., Dano, S., Sorensen, P.G.: Dynamical quorum sensing: population density encoded in cellular dynamics. Proc. Natl. Acad. Sci. U. S. A. 104(47), 18377–18381 (2007).  https://doi.org/10.1073/pnas.0706089104 ADSCrossRefGoogle Scholar
  31. 31.
    Olsen, L.F., Andersen, A.Z., Lunding, A., Brasen, J.C., Poulsen, A.K.: Regulation of glycolytic oscillations by mitochondrial and plasma membrane H+-ATPases. Biophys. J. 96(9), 3850–3861 (2009).  https://doi.org/10.1016/j.bpj.2009.02.026 ADSCrossRefGoogle Scholar
  32. 32.
    Richard, P., Teusink, B., Hemker, M.B., Van Dam, K., Westerhoff, H.V.: Sustained oscillations in free-energy state and hexose phosphates in yeast. Yeast 12(8), 731–740 (1996).  https://doi.org/10.1002/(SICI)1097-0061(19960630)12:8<731::AID-YEA961>3.0.CO;2-Z
  33. 33.
    Bagatolli, L.A., Stock, R.P.: The cell as a gel: material for a conceptual discussion. Physiological Mini Reviews 9(5), 38–49 (2016)Google Scholar
  34. 34.
    Yashin, V.V., Kuksenok, O., Dayal, P., Balazs, A.C.: Mechano-chemical oscillations and waves in reactive gels. Rep. Prog. Phys. 75(6), 066601 (2012).  https://doi.org/10.1088/0034-4885/75/6/066601 ADSCrossRefGoogle Scholar
  35. 35.
    Bockmann, M., Hess, B., Muller, S.C.: Temperature gradients traveling with chemical waves. Phys. Rev. E 53(5), 5498–5501 (1996)Google Scholar
  36. 36.
    Franck, U., Geiseler, W.: Zur periodischen Reaktion von Malonsäure mit Kaliumbromat in Gegenwart von Cer-Ionen. Naturwissenschaften 58, 52–53 (1971)ADSCrossRefGoogle Scholar
  37. 37.
    Franck, U.F.: Chemical Oscillations. Angewandte Chemie-International 17, 1–15 (1978)Google Scholar
  38. 38.
    Wang, T.: Studies on the action potential from a thermodynamic perspective. University of Copenhagen (2017)Google Scholar
  39. 39.
    Ritchie, J.M., Keynes, R.D.: The production and absorption of heat associated with electrical activity in nerve and electric organ. Q. Rev. Biophys. 18(4), 451–476 (1985)CrossRefGoogle Scholar
  40. 40.
    Schrödinger, E.: What is Life – the Physical Aspect of the Living Cell. Cambridge University Press (1944)Google Scholar
  41. 41.
    Ling, G.N.: Life at the cell and below cell level. The hidden history of a fundamental revolution in biology. Pacific Press, (2001)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Henrik Seir Thoke
    • 1
    • 2
  • Lars F. Olsen
    • 1
    • 2
  • Lars Duelund
    • 1
    • 3
  • R. P. Stock
    • 1
  • Thomas Heimburg
    • 4
  • Luis A. Bagatolli
    • 1
    • 5
  1. 1.MEMPHYS - International and Interdisciplinary Research NetworkOdense MDenmark
  2. 2.University of Southern DenmarkInstitute for Biochemistry and Molecular BiologyOdense MDenmark
  3. 3.Department of Chemical Engineering, Biotechnology and Environmental TechnologyUniversity of Southern DenmarkOdense MDenmark
  4. 4.Membrane Biophysics GroupNiels Bohr Institute University of CopenhagenCopenhagenDenmark
  5. 5.Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba)CórdobaArgentina

Personalised recommendations