Advertisement

Journal of Biological Physics

, Volume 44, Issue 1, pp 53–80 | Cite as

Calcium–axonemal microtubuli interactions underlie mechanism(s) of primary cilia morphological changes

  • Vlado A. Buljan
  • Manuel B. Graeber
  • R. M. Damian Holsinger
  • Daniel Brown
  • Brett D. Hambly
  • Edward J. Delikatny
  • Vladimira R. Vuletic
  • Xavier N. Krebs
  • Ilijan B. Tomas
  • John J. Bohorquez-Florez
  • Guo Jun Liu
  • Richard B. Banati
ORIGINAL PAPER

Abstract

We have used cell culture of astrocytes aligned within microchannels to investigate calcium effects on primary cilia morphology. In the absence of calcium and in the presence of flow of media (10 μL.s−1) the majority (90%) of primary cilia showed reversible bending with an average curvature of 2.1 ± 0.9 × 10−4 nm−1. When 1.0 mM calcium was present, 90% of cilia underwent bending. Forty percent of these cilia demonstrated strong irreversible bending, resulting in a final average curvature of 3.9 ± 1 × 10−4 nm−1, while 50% of cilia underwent bending similar to that observed during calcium-free flow. The average length of cilia was shifted toward shorter values (3.67 ± 0.34 μm) when exposed to excess calcium (1.0 mM), compared to media devoid of calcium (3.96 ± 0.26 μm). The number of primary cilia that became curved after calcium application was reduced when the cell culture was pre-incubated with 15 μM of the microtubule stabilizer, taxol, for 60 min prior to calcium application. Calcium caused single microtubules to curve at a concentration ≈1.0 mM in vitro, but at higher concentration (≈1.5 mM) multiple microtubule curving occurred. Additionally, calcium causes microtubule-associated protein-2 conformational changes and its dislocation from the microtubule wall at the location of microtubule curvature. A very small amount of calcium, that is 1.45 × 1011 times lower than the maximal capacity of TRPPs calcium channels, may cause gross morphological changes (curving) of primary cilia, while global cytosol calcium levels are expected to remain unchanged. These findings reflect the non-linear manner in which primary cilia may respond to calcium signaling, which in turn may influence the course of development of ciliopathies and cancer.

Keywords

Primary cilia Calcium Axonemal microtubules Interactions Morphology Nonlinear dynamics 

Notes

Acknowledgements

We would like to express our sincere gratitude to Professor Maxwell Bennett, AO (Professor of Neuroscience, University Chair, Founder and Scientific Director of The Brain and Mind Research Institute, The University of Sydney) for his genuine interest in this work and continued support. We are especially grateful to Professor Bennett for allowing us to use his lab’s equipment and cell culture to produce the data shown in Fig. 1, Fig. 2 and Fig. 3.

We cordially thank to Professor Boris Martinac, AO (Professor of Biophysics, Head of Mechanobiology Laboratory, Victor Chang Cardiac Research Institute, University of New South Wales) for critical reading of the initial version of this manuscript and his highly valuable comments.

We also kindly thank Dr. Ellie Cable, Senior Microscopist and Laboratory Manager at the Australian Centre for Microscopy and Microanalysis, The University of Sydney, for her friendly and highly professional help.

The authors dedicate this paper to the memory of Dr Vlado A. Buljan, the lead author, who unexpectedly passed away in March 2017 when this manuscript was under review. Dr Buljan was a dedicated scientist who pursued his research into the biophysics of tubulin with exemplary vigour. He will be greatly missed by his colleagues.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Satir, P., Christensen, S.T.: Overview of structure and function of mammalian cilia. Annu. Rev. Physiol. 69, 377–400 (2007).  https://doi.org/10.1146/annurev.physiol.69.040705.141236 CrossRefGoogle Scholar
  2. 2.
    Delling, M., DeCaen, P.G., Doerner, J.F., Febvay, S., Clapham, D.E.: Primary cilia are specialized calcium signalling organelles. Nature 504(7479), 311–314 (2013).  https://doi.org/10.1038/nature12833 ADSCrossRefGoogle Scholar
  3. 3.
    DeCaen, P.G., Delling, M., Vien, T.N., Clapham, D.E.: Direct recording and molecular identification of the calcium channel of primary cilia. Nature 504(7479), 315–318 (2013).  https://doi.org/10.1038/nature12832 ADSCrossRefGoogle Scholar
  4. 4.
    Nauli, S.M., Zhou, J.: Polycystins and mechanosensation in renal and nodal cilia. BioEssays 26(8), 844–856 (2004).  https://doi.org/10.1002/bies.20069 CrossRefGoogle Scholar
  5. 5.
    Toftgard, R.: Two sides to cilia in cancer. Nat. Med. 15(9), 994–996 (2009).  https://doi.org/10.1038/nm0909-994 CrossRefGoogle Scholar
  6. 6.
    Nauli, S.M., Jin, X., AbouAlaiwi, W.A., El-Jouni, W., Su, X., Zhou, J.: Non-motile primary cilia as fluid shear stress mechanosensors. Methods Enzymol. 525, 1–20 (2013).  https://doi.org/10.1016/B978-0-12-397944-5.00001-8 CrossRefGoogle Scholar
  7. 7.
    Davenport, J.R., Yoder, B.K.: An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am. J. Physiol. Renal Physiol. 289(6), F1159–F1169 (2005).  https://doi.org/10.1152/ajprenal.00118.2005 CrossRefGoogle Scholar
  8. 8.
    Moorman, S.J., Ardon, Z., Shorr, A.Z.: The primary cilium as a gravitational force transducer and a regulator of transcriptional noise. Dev. Dynam. 237, 1955–1959 (2008).  https://doi.org/10.1002/dvdy.21493 CrossRefGoogle Scholar
  9. 9.
    Seeley, E.S., Nachury, M.V.: The perennial organelle: assembly and disassembly of the primary cilium. J. Cell Sci. 123, 511–518 (2010).  https://doi.org/10.1242/jcs.061093 CrossRefGoogle Scholar
  10. 10.
    Praetorius, H.A., Spring, K.R.: Removal of the MDCK cell primary cilium abolishes flow sensing. J. Membrane Biol. 191, 69–76 (2002)CrossRefGoogle Scholar
  11. 11.
    Salisbury, J.L.: Primary cilia: putting sensors together. Curr. Biol. 14, R765–R767 (2004).  https://doi.org/10.1016/j.cub.2004.09.016 CrossRefGoogle Scholar
  12. 12.
    Wheatley, D.N.: Primary cilia in normal and pathological tissues. Pathobiology 63(4), 222–238 (1995)CrossRefGoogle Scholar
  13. 13.
    Abdul-Majeed, S., Moloney, B.C., Nauli, S.M.: Mechanisms regulating cilia growth and cilia function in endothelial cells. Cell. Mol. Life Sci. 69(1), 165–173 (2012).  https://doi.org/10.1007/s00018-011-0744-0 CrossRefGoogle Scholar
  14. 14.
    Abdul-Majeed, S., Nauli, S.M.: Dopamine receptor type 5 in the primary cilia has dual chemo- and mechano-sensory roles. Hypertension 58(2), 325–331 (2011).  https://doi.org/10.1161/hypertensionaha.111.172080 CrossRefGoogle Scholar
  15. 15.
    Abou Alaiwi, W.A., Lo, S.T., Nauli, S.M.: Primary cilia: highly sophisticated biological sensors. Sensors (Basel) 9(9), 7003–7020 (2009).  https://doi.org/10.3390/s90907003 CrossRefGoogle Scholar
  16. 16.
    Nauli, S.M., Alenghat, F.J., Luo, Y., Williams, E., Vassilev, P., Li, X., Elia, A.E., Lu, W., Brown, E.M., Quinn, S.J., Ingber, D.E., Zhou, J.: Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33(2), 129–137 (2003).  https://doi.org/10.1038/ng1076 CrossRefGoogle Scholar
  17. 17.
    Pazour, G.J., Witman, G.B.: The vertebrate primary cilium is a sensory organelle. Curr. Opin. Cell Biol. 15(1), 105–110 (2003)CrossRefGoogle Scholar
  18. 18.
    Scholey, J.M., Anderson, K.V.: Intraflagellar transport and cilium-based signaling. Cell 125(3), 439–442 (2006).  https://doi.org/10.1016/j.cell.2006.04.013 CrossRefGoogle Scholar
  19. 19.
    Shah, J.V.: Cells in tight spaces: the role of cell shape in cell function. J. Cell Biol. 191(2), 233–236 (2010).  https://doi.org/10.1083/jcb.201009048 CrossRefGoogle Scholar
  20. 20.
    Pitaval, A., Tseng, Q., Bornens, M., Thery, M.: Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. J. Cell Biol. 191(2), 303–312 (2010).  https://doi.org/10.1083/jcb.201004003 CrossRefGoogle Scholar
  21. 21.
    Goto, H., Inoko, A., Inagaki, M.: Cell cycle progression by the repression of primary cilia formation in proliferating cells. Cell. Mol. Life Sci. 70(20), 3893–3905 (2013).  https://doi.org/10.1007/s00018-013-1302-8 CrossRefGoogle Scholar
  22. 22.
    Tucker, R.W., Pardee, A.B., Fujiwara, K.: Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell 17(3), 527–535 (1979)CrossRefGoogle Scholar
  23. 23.
    Plotnikova, O.V., Golemis, E.A., Pugacheva, E.N.: Cell cycle-dependent ciliogenesis and cancer. Cancer Res. 68(7), 2058–2061 (2008).  https://doi.org/10.1158/0008-5472.CAN-07-5838 CrossRefGoogle Scholar
  24. 24.
    Fry, A.M., Leaper, M.J., Bayliss, R.: The primary cilium: guardian of organ development and homeostasis. Organ 10(1), 62–68 (2014).  https://doi.org/10.4161/org.28910 Google Scholar
  25. 25.
    Gerdes, J.M., Davis, E.E., Katsanis, N.: The vertebrate primary cilium in development, homeostasis, and disease. Cell 137(1), 32–45 (2009).  https://doi.org/10.1016/j.cell.2009.03.023 CrossRefGoogle Scholar
  26. 26.
    Oishi, I., Kawakami, Y., Raya, A., Callol-Massot, C., Izpisua Belmonte, J.C.: Regulation of primary cilia formation and left-right patterning in zebrafish by a noncanonical Wnt signaling mediator, duboraya. Nat. Genet. 38(11), 1316–1322 (2006).  https://doi.org/10.1038/ng1892 CrossRefGoogle Scholar
  27. 27.
    Moser, J.J., Fritzler, M.J., Rattner, J.B.: Ultrastructural characterization of primary cilia in pathologically characterized human glioblastoma multiforme (GBM) tumors. BMC Clin. Pathol. 14, 40 (2014).  https://doi.org/10.1186/1472-6890-14-40 CrossRefGoogle Scholar
  28. 28.
    Hassounah, N.B., Nagle, R., Saboda, K., Roe, D.J., Dalkin, B.L., McDermott, K.M.: Primary cilia are lost in preinvasive and invasive prostate cancer. PLoS ONE 8(7), e68521 (2013).  https://doi.org/10.1371/journal.pone.0068521
  29. 29.
    Yuan, K., Frolova, N., Xie, Y., Wang, D., Cook, L., Kwon, Y.J., Steg, A.D., Serra, R., Frost, A.R.: Primary cilia are decreased in breast cancer: analysis of a collection of human breast cancer cell lines and tissues. J. Histochem. Cytochem. 58(10), 857–870 (2010).  https://doi.org/10.1369/jhc.2010.955856 CrossRefGoogle Scholar
  30. 30.
    Christensen, S.T., Pedersen, L.B., Schneider, L., Satir, P.: Sensory cilia and integration of signal transduction in human health and disease. Traffic 8(2), 97–109 (2007).  https://doi.org/10.1111/j.1600-0854.2006.00516.x CrossRefGoogle Scholar
  31. 31.
    Badano, J.L., Mitsuma, N., Beales, P.L., Katsanis, N.: The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet. 7, 125–148 (2006).  https://doi.org/10.1146/annurev.genom.7.080505.115610 CrossRefGoogle Scholar
  32. 32.
    Prasad, R.M., Jin, X., Nauli, S.M.: Sensing a sensor: identifying the mechanosensory function of primary cilia. Biosensors (Basel) 4(1), 47–62 (2014).  https://doi.org/10.3390/bios4010047 CrossRefGoogle Scholar
  33. 33.
    Jin, X., Mohieldin, A.M., Muntean, B.S., Green, J.A., Shah, J.V., Mykytyn, K., Nauli, S.M.: Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli. Cell. Mol. Life Sci. 71(11), 2165–2178 (2014).  https://doi.org/10.1007/s00018-013-1483-1 CrossRefGoogle Scholar
  34. 34.
    Ishihara, Y., Sugawara, Y., Kamioka, H., Kawanabe, N., Hayano, S., Balam, T.A., Naruse, K., Yamashiro, T.: Ex vivo real-time observation of Ca2+ signaling in living bone in response to shear stress applied on the bone surface. Bone 53(1), 204–215 (2013).  https://doi.org/10.1016/j.bone.2012.12.002 CrossRefGoogle Scholar
  35. 35.
    Praetorius, H.A., Spring, K.R.: Bending the MDCK cell primary cilium increases intracellular calcium. J. Membr. Biol. 184, 71–79 (2001)CrossRefGoogle Scholar
  36. 36.
    Grantham, J.J.: Clinical practice. Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 359(14), 1477–1485 (2008).  https://doi.org/10.1056/NEJMcp0804458 CrossRefGoogle Scholar
  37. 37.
    Torres, V.E., Harris, P.C., Pirson, Y.: Autosomal dominant polycystic kidney disease. Lancet 369, 1287–1300 (2007).  https://doi.org/10.1016/S0140-6736(07)60601-1 CrossRefGoogle Scholar
  38. 38.
    Bichet, D., Peters, D., Patel, A.J., Delmas, P., Honore, E.: Cardiovascular polycystins: insights from autosomal dominant polycystic kidney disease and transgenic animal models. Trends Cardiovasc. Med. 16(8), 292–298 (2006).  https://doi.org/10.1016/j.tcm.2006.07.002 CrossRefGoogle Scholar
  39. 39.
    Patel, A., Honoré, E.: Polycystins and renovascular mechanosensory transduction. Nat. Rev. Nephrol. 6, 530–538 (2010).  https://doi.org/10.1038/nrneph.2010.97 CrossRefGoogle Scholar
  40. 40.
    Montalbetti, N., Li, Q., Wu, Y., Chen, X.Z., Cantiello, H.F.: Polycystin-2 cation channel function in the human syncytiotrophoblast is regulated by microtubular structures. J. Physiol. 579(Pt 3), 717–728 (2007).  https://doi.org/10.1113/jphysiol.2006.125583 CrossRefGoogle Scholar
  41. 41.
    Scemes, E., Suadicani, S.O., Spray, D.C.: Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J. Neurosci. 20(4), 1435–1445 (2000)Google Scholar
  42. 42.
    Cole, R., De Vellis, J.: Astrocyte and oligodendrocyte cultures. In: Fedoroff, S.S., Richardson, A. (eds.) Protocols for Neural Cell Cultures Pp. 117–130. Humana Press, New Jersey (1997)Google Scholar
  43. 43.
    Wiesinger, H., Schuricht, B., Hamprecht, B.: Replacement of glucose by sorbitol in growth medium causes selection of astroglial cells from heterogeneous primary cultures derived from newborn mouse brain. Brain Res. 550(1), 69–76 (1991)CrossRefGoogle Scholar
  44. 44.
    Bennett, M.R., Buljan, V., Farnell, L., Gibson, W.G.: Purinergic junctional transmission and propagation of calcium waves in spinal cord astrocyte networks. Biophys. J. 91(9), 3560–3571 (2006).  https://doi.org/10.1529/biophysj.106.082073 ADSCrossRefGoogle Scholar
  45. 45.
    Bennett, M.R., Buljan, V., Farnell, L., Gibson, W.G.: Purinergic junctional transmission and propagation of calcium waves in cultured spinal cord microglial networks. Purinergic Signal. 4(1), 47–59 (2008).  https://doi.org/10.1007/s11302-007-9076-9 CrossRefGoogle Scholar
  46. 46.
    Takano, H., Sul, J.Y., Mazzanti, M.L., Doyle, R.T., Haydon, P.G., Porter, M.D.: Micropatterned substrates: approach to probing intercellular communication pathways. Anal. Chem. 74(18), 4640–4646 (2002)CrossRefGoogle Scholar
  47. 47.
    Recknor, J.B., Recknor, J.C., Sakaguchi, D.S., Mallapragada, S.K.: Oriented astroglial cell growth on micropatterned polystyrene substrates. Biomaterials 25, 2753–2767 (2004).  https://doi.org/10.1016/j.biomaterials.2003.11.045 CrossRefGoogle Scholar
  48. 48.
    Whitesides, G.M., Ostuni, E., Takayama, S., Jiang, X., Ingber, D.E.: Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).  https://doi.org/10.1146/annurev.bioeng.3.1.335 CrossRefGoogle Scholar
  49. 49.
    Ott, C., Lippincott-Schwartz, J.: Visualization of live primary cilia dynamics using fluorescence microscopy. Curr. Protoc. Cell Biol. Unit 4(26), 1–22 (2012).  https://doi.org/10.1002/0471143030.cb0426s57 Google Scholar
  50. 50.
    Shelanski, M.L., Gaskin, F., Cantor, C.R.: Microtubule assembly in the absence of added nucleotides. Proc. Natl. Acad. Sci. U. S. A. 70(3), 765–768 (1973)ADSCrossRefGoogle Scholar
  51. 51.
    Kim, H., Binder, L.I., Rosenbaum, J.L.: The periodic association of MAP-2 with brain microtubules in vitro. J. Cell Biol. 80(2), 266–276 (1979)CrossRefGoogle Scholar
  52. 52.
    Buljan, V., Ivanova, E.P., Cullen, K.M.: How calcium controls microtubule anisotropic phase formation in the presence of microtubule-associated proteins in vitro. Biochem. Biophys. Res. Commun. 381(2), 224–228 (2009).  https://doi.org/10.1016/j.bbrc.2009.02.028 CrossRefGoogle Scholar
  53. 53.
    Langford, G.M.: Length and appearance of projections on neuronal microtubules in vitro after negative staining: evidence against a crosslinking function for MAPs. J. Ultrastruct. Res. 85(1), 1–10 (1983)CrossRefGoogle Scholar
  54. 54.
    Karr, T.L., Kristofferson, D., Purich, D.L.: Calcium ion induces endwise depolymerization of bovine brain microtubules. J. Biol. Chem. 255(24), 11853–11856 (1980)Google Scholar
  55. 55.
    Schiff, P.B., Fant, J., Horwitz, S.B.: Promotion of microtubule assembly in vitro by taxol. Nature 277(5698), 665–667 (1979)ADSCrossRefGoogle Scholar
  56. 56.
    Arnal, I., Wade, R.H.: How does taxol stabilize microtubules? Curr. Biol. 5(8), 900–908 (1995)CrossRefGoogle Scholar
  57. 57.
    Vater, W., Bohm, K.J., Unger, E.: Tubulin assembly in the presence of calcium ions and taxol: microtubule bundling and formation of macrotubule-ring complexes. Cell Motil. Cytoskeleton 36(1), 76–83 (1997).  https://doi.org/10.1002/(SICI)1097-0169(1997)36:1<76::AID-CM7>3.0.CO;2-F CrossRefGoogle Scholar
  58. 58.
    Amos, L.A., Lowe, J.: How taxol stabilises microtubule structure. Chem. Biol. 6(3), R65–R69 (1999)CrossRefGoogle Scholar
  59. 59.
    Kern, W.F., Bland, J.R.: “Theorem of Pappus.” Solid Mensuration with Proofs, vol. 2. Wiley, New York (1948)Google Scholar
  60. 60.
    Fong, K.C., Babitch, J.A., Anthony, F.A.: Calcium binding to tubulin. Biochim. Biophys. Acta 952, 13–19 (1988)CrossRefGoogle Scholar
  61. 61.
    Solomon, F.: Binding sites for calcium on tubulin. Biochemistry 16(3), 358–363 (1977)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Serrano, L., Valencia, A., Caballero, R., Avila, J.: Localization of the high affinity calcium-binding site on tubulin molecule. J. Biol. Chem. 261(15), 7076–7081 (1986)Google Scholar
  63. 63.
    Sui, H., Downing, K.H.: Molecular architecture of axonemal microtubule doublets revealed by cryo-electron tomography. Nature 442(7101), 475–478 (2006).  https://doi.org/10.1038/nature04816 ADSCrossRefGoogle Scholar
  64. 64.
    Hernandez, M.A., Serrano, L., Avila, J.: Microtubule-associated protein, MAP2, is a calcium-binding protein. Biochim. Biophys. Acta 965(2–3), 195–201 (1988)CrossRefGoogle Scholar
  65. 65.
    Vassilev, P.M., Guo, L., Chen, X.-Z., Segal, Y., Peng, J.-B., Basora, N., Babakhanlou, H., Cruger, G., Kanazirska, M., Ye, C.-P., Brown, E.M., Hediger, M.A., Zhou, J.: Polycystin-2 is a novel cation channel implicated in defective intracellular Ca2+ homeostasis in polycystic kidney disease. Biochem. Biophys. Res. Commun. 282, 341–350 (2001)CrossRefGoogle Scholar
  66. 66.
    Cantero, M.R., Cantiello, H.F.: Calcium transport and local pool regulate polycystin-2 (TRPP2) function in human syncytiotrophoblast. Biophys. J. 15, 365–375 (2013).  https://doi.org/10.1016/j.bpj.2013.05.058 CrossRefGoogle Scholar
  67. 67.
    Lobert, S., Hennington, B.S., Correia, J.J.: Multiple sites for subtilisin cleavage of tubulin: effects of divalent cations. Cell Motil. Cytoskeleton 25(3), 282–297 (1993).  https://doi.org/10.1002/cm.970250308 CrossRefGoogle Scholar
  68. 68.
    Ferralli, J., Doll, T., Matus, A.: Sequence analysis of MAP2 function in living cells. J. Cell Sci. 107(Pt 11), 3115–3125 (1994)Google Scholar
  69. 69.
    Tuszynski, J.A., Brown, J.A., Crawford, E., Carpenter, E.J., Nip, M.L.A., Dixon, J.M., Sataric, M.V.: Molecular dynamics simulations of tubulin structure and calculations of electrostatic properties of microtubules. Math. Comput. Model. 41, 1055–1070 (2005).  https://doi.org/10.1016/j.mcm.2005.05.002 MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Lefèvre, J., Chernov, K.G., Joshi, V., Delga, S., Toma, F., Pastrè, D., Curmi, P.A., Savarin, P.: The C-terminus of tubulin, a versatile partner for cationic molecules. J. Biol. Chem. 286(4), 3065–3078 (2011).  https://doi.org/10.1074/jbc.M110.144089 CrossRefGoogle Scholar
  71. 71.
    Priel, A., Ramos, A.J., Tuszynski, J.A., Cantiello, H.F.: Effect of calcium on electrical energy transfer by microtubules. J. Biol. Phys. 34, 475–485 (2008).  https://doi.org/10.1007/s10867-008-9106-z CrossRefGoogle Scholar
  72. 72.
    Siwy, Z.S., Powell, M.R., Petrov, A., Kalman, E., Trautmann, C., Eisenberg, R.S.: Calcium-induced voltage gating in single conical nanopores. Nano Lett. 6(8), 1729–1734 (2006).  https://doi.org/10.1021/nl061114x ADSCrossRefGoogle Scholar
  73. 73.
    Sataric, M.V., Sekulic, D., Živanov, M.: Solitonic ionic currents along microtubules. J. Comput. Theor. Nanosci. 7, 1–10 (2010).  https://doi.org/10.1166/jctn.2010.1609 CrossRefGoogle Scholar
  74. 74.
    Li, H., DeRosier, D.J., Nicholson, W.V., Nogales, E., Downing, K.H.: Microtubule structure at 8Å resolution. Structure 10, 1317–1328 (2002)CrossRefGoogle Scholar
  75. 75.
    Tagliazucchi, M., Szleifer, I.: Transport mechanisms in nanopores and nanochannels: can we mimic nature? Mater. Today 18(3), 131–142 (2015).  https://doi.org/10.1016/j.mattod.2014.10.020 CrossRefGoogle Scholar
  76. 76.
    Ma, L., Cockroft, S.L.: Biological nanopores for single-molecule biophysics. Chembiochem 11(1), 25–34 (2010).  https://doi.org/10.1002/cbic.200900526 CrossRefGoogle Scholar
  77. 77.
    Melki, R., Carlier, M.F., Pantaloni, D., Timasheff, S.N.: Cold depolymerization of microtubules to double rings: geometric stabilization of assemblies. Biochemistry 28(23), 9143–9152 (1989)CrossRefGoogle Scholar
  78. 78.
    Berkowitz, S.A., Wolff, J.: Intrinsic calcium sensitivity of tubulin polymerization. The contributions of temperature, tubulin concentration, and associated proteins. J. Biol. Chem. 256(21), 11216–11223 (1981)Google Scholar
  79. 79.
    Brouhard, G.J., Rice, L.M.: The contribution of αβ-tubulin curvature to microtubule dynamics. J. Cell Biol. 207(3), 323–334 (2014).  https://doi.org/10.1083/jcb.201407095 CrossRefGoogle Scholar
  80. 80.
    Mitchison, T., Kirschner, M.: Dynamic instability of microtubule growth. Nature 312(5991), 237–242 (1984)ADSCrossRefGoogle Scholar
  81. 81.
    Kirschner, M., Mitchison, T.: Beyond self-assembly: from microtubules to morphogenesis. Cell 45(3), 329–342 (1986)CrossRefGoogle Scholar
  82. 82.
    Tuszynski, J.A., Hameroff, S., Sataric, M.V., Trpisova, B., Nip, M.L.A.: Ferroelectric behavior in microtubule dipole lattices - implications for information-processing, signaling and assembly disassembly. J. Theor. Biol. 174, 371–380 (1995)CrossRefGoogle Scholar
  83. 83.
    Tuszynski, J.A., Brown, J.A., Hawrylak, P.: Dielectric polarization, electrical conduction, information processing and quantum computation in microtubules. Are they plausible? Phil. Trans. R. Soc. Lond. A 356, 1897–1926 (1998)ADSCrossRefGoogle Scholar
  84. 84.
    Tuszynski, J.A., Portet, S., Dixon, J.M., Luxford, C., Cantiello, H.F.: Ionic wave propagation along actin filaments. Biophys. J. 86, 1890–1903 (2004).  https://doi.org/10.1016/S0006-3495(04)74255-1 ADSCrossRefGoogle Scholar
  85. 85.
    Sekulić, D.L., Satarić, B.M., Tuszynski, J.A., Satarić, M.V.: Nonlinear ionic pulses along microtubules. Eur. Phys. J. E. Soft Matter 34, 49 (2011).  https://doi.org/10.1140/epje/i2011-11049-0 CrossRefGoogle Scholar
  86. 86.
    Vanag, V.K., Epstein, I.R.: Pattern formation mechanisms in reaction-diffusion systems. Int. J. Dev. Biol. 53, 673–681 (2009).  https://doi.org/10.1387/ijdb.072484vv CrossRefGoogle Scholar
  87. 87.
    Minoura, I., Muto, E.: Dielectric measurement of individual microtubules using the electroorientation method. Biophys. J. 90(10), 3739–3748 (2006).  https://doi.org/10.1529/biophysj.105.071324 ADSCrossRefGoogle Scholar
  88. 88.
    Priel, A., Tuszynski, J.A., Cantiello, H.F.: The dendritic cytoskeleton as a computational device: an hypothesis. In: Tuszynski, J.A. (ed.) The Emerging Physics of Consciousness. pp. 293–325. Springer, (2006)Google Scholar
  89. 89.
    Brown, J.A., Tuszynski, J.A.: The possible relationship between cell shape and electric fields. J. Theor. Biol. 200(2), 245–247 (1999).  https://doi.org/10.1006/jtbi.1999.0984 CrossRefGoogle Scholar
  90. 90.
    Satarić, M.V., Ilić, D.I., Ralević, N., Tuszynski, J.A.: A nonlinear model of ionic wave propagation along microtubules. Eur. Biophys. J. 38, 637–647 (2009).  https://doi.org/10.1007/s00249-009-0421-5 CrossRefGoogle Scholar
  91. 91.
    Sataric, M.V., Sataric, B.M.: Ionic pulses along cytoskeletal protophilaments. J. Physics: Conf. Ser. 329, 012009 (2011).  https://doi.org/10.1088/1742-6596/329/1/012009 Google Scholar
  92. 92.
    Dye, R.B., Fink, S.P., Williams, R.C.J.: Taxol-induced flexibility of microtubules and its reversal by MAP-2 and tau. J. Biol. Chem. 268(10), 6847–6850 (1993)Google Scholar
  93. 93.
    Felgner, H., Frank, R., Biernat, J., Mandelkow, E.M., Mandelkow, E., Ludin, B., Matus, A., Schliwa, M.: Domains of neuronal microtubule-associated proteins and flexural rigidity of microtubules. J. Cell Biol. 138(5), 1067–1075 (1997)CrossRefGoogle Scholar
  94. 94.
    Kim, H., Jensen, C.G., Rebhun, L.I.: The binding of MAP-2 and tau on brain microtubules in vitro: implications for microtubule structure. Ann. N. Y. Acad. Sci. 466, 218–239 (1986)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Vlado A. Buljan
    • 1
    • 2
  • Manuel B. Graeber
    • 1
    • 2
  • R. M. Damian Holsinger
    • 3
    • 4
  • Daniel Brown
    • 1
  • Brett D. Hambly
    • 5
  • Edward J. Delikatny
    • 6
  • Vladimira R. Vuletic
    • 7
  • Xavier N. Krebs
    • 1
  • Ilijan B. Tomas
    • 8
  • John J. Bohorquez-Florez
    • 1
  • Guo Jun Liu
    • 9
  • Richard B. Banati
    • 1
    • 3
    • 9
  1. 1.Brain Tumor Research Laboratories, Brain and Mind Center, Sydney Medical School and Faculty of Health SciencesUniversity of SydneySydneyAustralia
  2. 2.Discipline of Anatomy and Embryology, School of Medical Sciences, Sydney Medical School, Charles Perkins Centre and Bosch InstituteUniversity of SydneySydneyAustralia
  3. 3. Laboratory of Molecular Neuroscience and Dementia, Brain and Mind Center, Sydney Medical SchoolUniversity of SydneySydneyAustralia
  4. 4.Discipline of Biomedical Science, School of Medical Sciences, Sydney Medical SchoolUniversity of SydneyLidcombeAustralia
  5. 5.Discipline of Pathology, School of Medical Sciences, Sydney Medical School, Bosch InstituteUniversity of SydneySydneyAustralia
  6. 6.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA
  7. 7.Clinical Department of NeurologyUHC Rijeka, Medical Faculty RijekaRijekaCroatia
  8. 8.Department of Oncology and Radiotherapy, Medical FacultyUniversity ‘Josip Juraj Strossmayer’OsijekCroatia
  9. 9.Australian Nuclear Sciences and Technology Organisation (ANSTO)The Bragg Institute and the Australian SynchrotronSydneyAustralia

Personalised recommendations