Journal of Biological Physics

, Volume 43, Issue 4, pp 471–479 | Cite as

Analytical modeling of the mechanics of early invasion of a merozoite into a human erythrocyte

  • Tamer AbdalrahmanEmail author
  • Thomas Franz


In this study, we used a continuum model based on contact mechanics to understand the mechanics of merozoite invasion into human erythrocytes. This model allows us to evaluate the indentation force and work as well as the contact pressure between the merozoite and erythrocyte for an early stage of invasion (γ = 10%). The model predicted an indentation force of 1.3e −11N and an indentation work of 1e −18J. The present analytical model can be considered as a useful tool not only for investigations in mechanobiology and biomechanics but also to explore novel therapeutic targets for malaria and other parasite infections.


Cell mechanics Malaria Merozoite Erythrocyte Contact mechanics Parasite invasion 



The research reported in this publication was supported by the National Research Foundation of South Africa (UID 92531 and 93542), and the South African Medical Research Council under a Self-Initiated Research Grant (SIR 328148). Views and opinions expressed are not those of the NRF or MRC but of the authors.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflicts of interest.


  1. 1.
    Nigussie, D., Beyene, T., Shah, N.A., Belew, S.: New targets in malaria parasite chemotherapy: a review. Malar. Contr Eliminat. S1, S1007 (2015)Google Scholar
  2. 2.
    Koch, M., Baum, J.: The mechanics of malaria parasite invasion of the human erythrocyte–towards a reassessment of the host cell contribution. Cell. Microbiol. 18, 319–329 (2016)CrossRefGoogle Scholar
  3. 3.
    Suresh, S.: Mechanical response of human red blood cells in health and disease: some structure–property–function relationships. J. Mater. Res. 21, 1871–1877 (2006)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Miller, L.H., Usami, S., Chien, S.: Alteration in the rheologic properties of Plasmodium knowlesi-infected red cells. A possible mechanism for capillary obstruction. J. Clin. Invest. 50, 1451–1455 (1971)CrossRefGoogle Scholar
  5. 5.
    Miller, L.H., Chien, S., Usami, S.: Decreased deformability of Plasmodium coatneyi-infected red cells and its possible relation to cerebral malaria. Am. J. Trop. Med. Hyg. 21, 133–137 (1972)CrossRefGoogle Scholar
  6. 6.
    Cranston, H.A., Boylan, C.W., Carroll, G.L., Sutera, S.P., Gluzman, I.Y., Krogstad, D.J.: Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223, 400–403 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    Suwanarusk, R., Cooke, B.M., Dondorp, A.M., Silamut, K., Sattabongkot, J., White, N.J., Udomsangpetch, R.: The deformability of red blood cells parasitized by Plasmodium falciparum and P. vivax. J. Infect. Dis. 189, 190–194 (2004)CrossRefGoogle Scholar
  8. 8.
    Bannister, L., Mitchell, G.: The ins, outs and roundabouts of malaria. Trends Parasitol. 19, 209–213 (2003)CrossRefGoogle Scholar
  9. 9.
    Dasgupta, S., Auth, T., Gov, N.S., Satchwell, T.J., Hanssen, E., Zuccala, E.S., Riglar, D.T., Toye, A.M., Betz, T., Baum, J., Gompper, G.: Membrane wrapping contributions to malaria parasite invasion of the human erythrocyte. Biophys. J. 107, 43–54 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Diez-Silva, M., Dao, M., Han, J., Lim, C.T., Suresh, S.: Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull. 35, 382–388 (2010)CrossRefGoogle Scholar
  11. 11.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, UK (1985)CrossRefzbMATHGoogle Scholar
  12. 12.
    Jin, F., Xu, G., Wei, Z.: A unified treatment of axisymmetric adhesive contact on a power-law graded elastic half-space. J. Appl. Mech. 80(6), 061024 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Li, M., Liu, L., Xi, N., Wang, Y., Dong, Z., Xiao, X., Zhang, W.: Atomic force microscopy imaging and mechanical properties measurement of red blood cells and aggressive cancer cells. Sci. China Life Sci. 55, 968–973 (2012)CrossRefGoogle Scholar
  14. 14.
    Tyska, M.J., Dupuis, D.E., Guilford, W.H., Patlak, J.B., Waller, G.S., Trybus, K.M., Warshaw, D.M., Lowey, S.: Two heads of myosin are better than one for generating force and motion. Proc. Natl. Acad. Sci. U.S.A. 96, 4401–4407 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Finer, J.T., Simmons, R.M., Spudich, J.A.: Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    Fulle, S., Withers-Martinez, C., Blackman, M.J., Morris, G.M., Finn, P.W.: Molecular determinants of binding to the Plasmodium subtilisin-like protease 1. J. Chem. Inf. Model. 53, 573–583 (2013)CrossRefGoogle Scholar
  17. 17.
    Gohlke, H., Case, D.A.: Converging free energy estimates: MM-PB (GB) SA studies on the protein–protein complex RAS–RAF. J. Comput. Chem. 25, 238–250 (2004)CrossRefGoogle Scholar
  18. 18.
    Slomka, N., Oomens, C.W., Gefen, A.: Evaluating the effective shear modulus of the cytoplasm in cultured myoblasts subjected to compression using an inverse finite element method. J. Mech. Behav. Biomed. Mater. 4, 1559–1566 (2011)CrossRefGoogle Scholar
  19. 19.
    Slomka, N., Gefen, A.: Confocal microscopy-based three-dimensional cell-specific modeling for large deformation analyses in cellular mechanics. J. Biomech. 43, 1806–1816 (2010)CrossRefGoogle Scholar
  20. 20.
    Or-Tzadikario, S., Gefen, A.: Confocal-based cell-specific finite element modeling extended to study variable cell shapes and intracellular structures: the example of the adipocyte. J. Biomech. 44, 567–573 (2011)CrossRefGoogle Scholar
  21. 21.
    Eaton, P., Zuzarte-Luis, V., Mota, M.M., Santos, N.C., Prudêncio, M.: Infection by plasmodium changes shape and stiffness of hepatic cells. Nanomed. Nanotechnol. Biol. Med. 8, 17–19 (2012)CrossRefGoogle Scholar
  22. 22.
    Li, Q.S., Lee, G.Y., Ong, C.N., Lim, C.T.: AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun. 374, 609–613 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Human Biology, Division of Biomedical Engineering, Faculty of Health SciencesUniversity of Cape Town, ObservatoryCape TownSouth Africa
  2. 2.Bioengineering Science Research Group, Engineering Sciences, Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK

Personalised recommendations