Journal of Biological Physics

, Volume 43, Issue 1, pp 69–86 | Cite as

Is the catalytic activity of triosephosphate isomerase fully optimized? An investigation based on maximization of entropy production

  • Željana Bonačić Lošić
  • Tomislav Donđivić
  • Davor JuretićEmail author
Original Paper


Triosephosphate isomerase (TIM) is often described as a fully evolved housekeeping enzyme with near-maximal possible reaction rate. The assumption that an enzyme is perfectly evolved has not been easy to confirm or refute. In this paper, we use maximization of entropy production within known constraints to examine this assumption by calculating steady-state cyclic flux, corresponding entropy production, and catalytic activity in a reversible four-state scheme of TIM functional states. The maximal entropy production (MaxEP) requirement for any of the first three transitions between TIM functional states leads to decreased total entropy production. Only the MaxEP requirement for the product (R-glyceraldehyde-3-phosphate) release step led to a 30% increase in enzyme activity, specificity constant kcat/KM, and overall entropy production. The product release step, due to the TIM molecular machine working in the physiological direction of glycolysis, has not been identified before as the rate-limiting step by using irreversible thermodynamics. Together with structural studies, our results open the possibility for finding amino acid substitutions leading to an increased frequency of loop six opening and product release.


Enzyme kinetic scheme Triosephosphate isomerase Maximum entropy production Kinetic constants 



Triosephosphate isomerase


Dihydroxyacetone phosphate


d-glyceraldehyde 3-phosphate


Maximum entropy production



The present work was supported by the Croatian Science Foundation, project number 8481. We thank Prof. Alessandro Tossi for improvements in presentation and to anonymous reviewer for careful reading of our manuscript and insightful suggestions.


  1. 1.
    Cooper, G.M.: The Cell: a Molecular Approach. The central role of enzymes as biological catalysts. 2nd edition, Sunderland (MA): Sinauer Associates. (2000)
  2. 2.
    Heinrich, R., Schuster, S., Holzhütter, H.-G.: Mathematical analysis of enzymic reaction systems using optimization principles. Eur. J. Biochem. 201, 1–21 (1991)CrossRefGoogle Scholar
  3. 3.
    Marin-Sanguino, A., Torres, N.: Modeling, steady state analysis and optimization of the catalytic efficiency of the triosephosphate isomerase. Bull. Math. Biol. 64(2), 301–326 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dobovišek, A., Županović, P., Brumen, M., Juretić, D.: Maximum entropy production and maximum Shannon entropy as germane principles for the evolution of enzyme kinetics. In: Dewar, R.C., Lineweaver, C.H., Niven, R.K., Regenauer-Lieb, K. (eds.) Beyond the Second Law, pp. 361–382. Springer, Berlin (2014)Google Scholar
  5. 5.
    Albery, W.J., Knowles, J.R.: Evolution of enzyme function and the development of catalytic efficiency. Biochemistry 15, 5631–5640 (1976)CrossRefGoogle Scholar
  6. 6.
    Wierenga, R.K., Kapetaniou, E.G., Venkatesan, R.: Triophosphate isomerase: a highly evolved biocatalyst. Cell. Mol. Life. Sci. 67, 3961–3982 (2010)CrossRefGoogle Scholar
  7. 7.
    Hill, T.L.: Free Energy Transduction and Biochemical Cycle Kinetics. Dover Publications, Inc. (2005)Google Scholar
  8. 8.
    Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes. Wiley, New York (1967)Google Scholar
  9. 9.
    Kleidon, A., Lorenz, R.D.: Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. Springer, Berlin (2005)Google Scholar
  10. 10.
    Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Martyushev, L.M., Seleznev, V.D.: The restrictions of the maximum entropy production principle. Phys A: Stat. Mech. Appl. 410, 17–21 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dobovišek, A., Županović, P., Brumen, M., Bonačić-Lošić, Ž., Kuić, D., Juretić, D.: Enzyme kinetics and the maximum entropy production principle. Biophys. Chem. 154, 49–55 (2011)CrossRefzbMATHGoogle Scholar
  13. 13.
    Juretić, D., Županović, P.: Photosynthetic models with maximum entropy production in irreversible charge transfer steps. J. Comp. Biol. Chem. 27, 541–553 (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    Dewar, R.C., Juretić, D., Županović, P.: The functional design of the rotary enzyme ATP synthase is consistent with maximum entropy production. Chem. Phys. Lett. 430, 177–182 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Knowles, J.R., Albery, W.J.: Perfection in enzyme catalysis: the energetics of triosephosphate isomerase. Acc. Chem. Res. 10, 105–111 (1977)CrossRefGoogle Scholar
  16. 16.
    Daar, I.O., Artymuik, P.J., Phillips, D.C., Maquat, L.E.: Human triose-phosphate isomerase deficiency: a single amino acid substitution leads in a thermolabile enzyme. Proc. Natl. Acad. Sci. U. S. A. 83, 7903–7907 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    Williams, J.C., Zeelen, J.P., Neubauer, G., Vriend, G., Backmann, J., Michels, P.A.M., Lambeir, A.-M., Wierenga, R.K.: Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power. Protein Eng. 12, 243–250 (1999)Google Scholar
  18. 18.
    Hill, T.L.: Free Energy Transduction in Biology. The Steady State Kinetic and Thermodynamic Formalism. Academic Press, New York (1977)Google Scholar
  19. 19.
    Rozovsky, S., McDermott, A.E.: Substrate product equilibrium on a reversible enzyme triosephosphate isomerase. Proc. Natl. Acad. Sci. U. S. A. 104, 2080–2085 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Eisenthal, R., Danson, M.J., Hough, D.W.: Catalytic efficiency and kcat/KM: useful comparator? Trends in Biotechnology 25(6), 247–249 (2007). doi: 10.1016/j.tibtech.2007.03.010
  21. 21.
    Johnson, K.A.: Transient-state kinetic analysis of enzyme reaction pathways. Enzymes 20, 1–61 (1992)CrossRefGoogle Scholar
  22. 22.
    Pettersson, G.: Evolutionary optimization of the catalytic efficiency of enzymes. Eur. J. Biochem. 206, 289–295 (1992)CrossRefGoogle Scholar
  23. 23.
    Dewar, R.C., Maritan, A.: A theoretical basis for maximum entropy production. In: Dewar, R.C., Lineweaver, C.H., Niven, R.K., Regenauer-Lieb, K. (eds.) Beyond the Second Law, pp. 49–71. Springer, Berlin (2014)Google Scholar
  24. 24.
    Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931). doi: 10.1103/PhysRev.37.405 ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Županović, P., Kuić, D., Lošić, Ž.B., Petrov, D., Juretić, D., Brumen, M.: The maximum entropy production principle and linear irreversible processes. Entropy 12, 996–1005 (2010). doi: 10.3390/e12050996 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hackl, K., Fischer, F.D., Svoboda, J.A.: Study on the principle of maximum dissipation for coupled and non-coupled non-isothermal processes in materials. Proc. R. Soc. A 467, 1186–1196 (2011). doi: 10.1098/rspa.2010.0179 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ross, J., Vlad, M.O.: Exact solutions for the entropy production rate of several irreversible processes. J. Phys. Chem. A 109, 10607–10612 (2005)CrossRefGoogle Scholar
  29. 29.
    Beretta, G.P.: Nonlinear quantum evolution equations to model irreversible adiabatic relaxation with maximal entropy production and other nonunitary processes. Rep. Math. Phys. 64, 139–168 (2009). doi: 10.1016/S0034-4877(09)90024-6 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Martyushev, L.M.: Entropy and entropy production: old misconceptions and new breakthroughs. Entropy 15, 1152–1170 (2013). doi: 10.3390/e15041152 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Andersen, B., Zimmerman, E.C., Ross, J.: Objections to a proposal on the rate of entropy production in systems far from equilibrium. J. Chem. Phys. 81, 4676–4677 (1984)ADSCrossRefGoogle Scholar
  32. 32.
    Ross, J., Corlan, A.D., Müller, S.C.: Proposed principle of maximum local entropy production. J. Phys. Chem. B 116, 7858–7865 (2012)CrossRefGoogle Scholar
  33. 33.
    Polettini, M.: Fact-checking Ziegler’s maximum entropy production principle beyond the linear regime and towards steady states. Entropy 15, 2570–2584 (2013). doi: 10.3390/e15072570 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Dewar, R.C.: Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A Math. Gen. 36, 631–641 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Dewar, R.C.: Maximum entropy production and the fluctuation theorem. J. Phys. A Math. Gen. 38, L371–L381 (2005). doi: 10.1088/0305-4470/38/21/L01 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Jaynes, E.T.: The minimum entropy production principle. Ann. Rev. Phys. Chem. 31, 579–601 (1980)ADSCrossRefGoogle Scholar
  37. 37.
    Ziman, J.M.: The general variational principle of transport theory. Can. J. Phys. 34, 1256–1263 (1956)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Ziegler, H.: An Introduction to Thermomechanics. North Holland, Amsterdam (1983)zbMATHGoogle Scholar
  39. 39.
    Miyamoto, H., Baker, V.R., Lorenz, R.D.: Entropy and the shaping of the landscape by water. In: Kleidon, A., Lorenz, R.D. (eds.) Non-equilibrium thermodynamics and the production of entropy: life, earth, and beyond, pp. 135–146. Springer, Berlin (2004)Google Scholar
  40. 40.
    Ito, T., Kleidon, A.: Entropy production of atmospheric heat transport. In: Kleidon, A., Lorenz, R.D. (eds.) Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond, pp. 93–106. Springer, Berlin (2005)CrossRefGoogle Scholar
  41. 41.
    Hill, A.: Entropy production as the selection rule between different growth morphologies. Nature 348, 426–428 (1990)ADSCrossRefGoogle Scholar
  42. 42.
    Belkin, A., Hubler, A., Bezryadin, A.: Self-assembled wiggling nano-structures and the principle of maximum entropy production. Sci. Rep. 5, 8323 (2015). doi: 10.1038/srep08323 ADSCrossRefGoogle Scholar
  43. 43.
    Unrean, P., Srienc, F.: Metabolic networks evolve towards states of maximum entropy production. Metab. Eng. 13, 666–673 (2011). doi: 10.1016/j.ymben.2011.08.003 CrossRefGoogle Scholar
  44. 44.
    Whitfield, J.: Survival of the likeliest. PLoS Biol. 5(5), 962–965 (2007). doi: 10.1371/journal.pbio.0050142 CrossRefGoogle Scholar
  45. 45.
    Orosz, F., Oláh, J., Ovádi, J.: Triosephosphate isomerase deficiency: new insights into an enigmatic disease. Biochim. Biophys. Acta 1792, 1168–1174 (2009)CrossRefGoogle Scholar
  46. 46.
    Sharma, P., Guptasarma, P.: ‘Super-perfect’ enzymes: structural stabilities and activities of recombinant triose phosphate isomerases from Pyrococcus furiosus and Thermococcus onnurineus produced in Escherichia coli. Biochem. Biophys. Res. Commun. 460, 753–758 (2015)CrossRefGoogle Scholar
  47. 47.
    Katebi, A.R., Jernigan, R.L.: The critical role of the loops of triosephosphate isomerase for its oligomerization, dynamics, and functionality. Protein Sci. 23, 213–228 (2014)CrossRefGoogle Scholar
  48. 48.
    Wade, R.C., Gabdoulline, R.R., Lüdemann, S.K., Lounnas, V.: Electrostatic steering and ionic tethering in enzyme-ligand binding: insights from simulations. Proc. Natl. Acad. Sci. U. S. A. 95, 5942–5949 (1998)ADSCrossRefGoogle Scholar
  49. 49.
    Wilhelm, T., Hoffman-Klipp, E., Heinrich, R.: An evolutionary approach to enzyme kinetics: optimization of ordered mechanisms. Bull. Math. Biol. 56, 65–106 (1994)CrossRefzbMATHGoogle Scholar
  50. 50.
    Klipp, E., Heinrich, R.: Competition for enzymes in metabolic pathways: implications for optimal distribution of enzyme concentrations and for the distribution of flux control. BioSystems 54, 1–14 (1999)CrossRefGoogle Scholar
  51. 51.
    Johnson, W.W., Liu, S., Ji, X., Gilliland, G.L., Armstrong, R.N.: Tyrosine 115 participates both in chemical and physical steps of the catalytic mechanism of a glutathione S-transferase. J. Biol. Chem. 268, 11508–11511 (1993)Google Scholar
  52. 52.
    Malabalan, M.M., Amyes, T.L., Richard, J.P.: A role for flexible loops in enzyme catalysis. Curr. Opin. Struct. Biol. 20, 702–710 (2010)CrossRefGoogle Scholar
  53. 53.
    Toney, M.D.: Common enzymological experiments allow free energy profile determination. Biochemistry 52, 5952–5965 (2013)CrossRefGoogle Scholar
  54. 54.
    Juretić, D., Županović, P.: The free-energy transduction and entropy production in initial photosynthetic reactions. In: Kleidon, A., Lorenz, R.D. (eds.) Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth and Beyond, pp. 161–171. Springer, Berlin (2005)Google Scholar
  55. 55.
    Hall, A., Knowles, J.R.: The uncatalyzed rates of enolization of dihydroxyacetone phosphate and of glyceraldehyde 3-phosphate in neutral aqueous solution. The quantitative assessment of the effectiveness of an enzyme catalyst. Biochemistry 14, 4348–4353 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Željana Bonačić Lošić
    • 1
  • Tomislav Donđivić
    • 2
  • Davor Juretić
    • 3
    Email author
  1. 1.Faculty of ScienceUniversity of SplitSplitCroatia
  2. 2.Medical High SchoolŠibenikCroatia
  3. 3.Mediterranean Institute for Life SciencesSplitCroatia

Personalised recommendations