Journal of Biological Physics

, Volume 42, Issue 3, pp 339–350 | Cite as

Thermodynamic measures of cancer: Gibbs free energy and entropy of protein–protein interactions

  • Edward A. Rietman
  • John Platig
  • Jack A. Tuszynski
  • Giannoula Lakka Klement
Original Paper


Thermodynamics is an important driving factor for chemical processes and for life. Earlier work has shown that each cancer has its own molecular signaling network that supports its life cycle and that different cancers have different thermodynamic entropies characterizing their signaling networks. The respective thermodynamic entropies correlate with 5-year survival for each cancer. We now show that by overlaying mRNA transcription data from a specific tumor type onto a human protein–protein interaction network, we can derive the Gibbs free energy for the specific cancer. The Gibbs free energy correlates with 5-year survival (Pearson correlation of –0.7181, p value of 0.0294). Using an expression relating entropy and Gibbs free energy to enthalpy, we derive an empirical relation for cancer network enthalpy. Combining this with previously published results, we now show a complete set of extensive thermodynamic properties and cancer type with 5-year survival.


Cancer Signaling networks Gibbs free energy Entropy Protein-protein interactions 5-year survival 



EAR was partly funded by the Newman Lakka Cancer Foundation, and CSTS Healthcare. JAT acknowledges funding from NSERC, Canadian Breast Cancer Foundation and the Allard Foundation. GLK was funded by NIH NIGMS RO1 GM93050, and philanthropic funds from Newman Lakka Cancer Foundation, Campanelli Foundation, Jack in the Beanstalk Foundation, and Binational Science Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Heath.

Author Contributions

EAR conceived the idea. JAT and EAR collaborated on the thermodynamics. JP contributed key chemical physics concepts. GLK contributed cancer biology concepts. All authors contributed to writing the manuscript.


  1. 1.
    Rietman, E., Bloemendal, A., Platig, J., Tuszynski, J., Klement, G.L.: Gibbs free energy of protein–protein interactions reflects tumor stage. (2015)
  2. 2.
    Paliouras, M., Zaman, N., Lumbroso, R., Kapogeorgakis, L., Beitel, L.K., Wang, E., Trifiro, M.: Dynamic rewiring of the androgen receptor protein interaction network correlates with prostate cancer clinical outcomes. Integr. Biol. (Camb.) 3, 1020–1032 (2011). doi: 10.1039/c1ib00038a CrossRefGoogle Scholar
  3. 3.
    Freije, W.A., Castro-Vargas, F.E., Fang, Z., Horvath, S., Cloughesy, T., Liau, L.M., Mischel, P.S., Nelson, S.F.: Gene expression profiling of gliomas strongly predicts survival. Cancer Res. 64, 6503–6510 (2004). doi: 10.1158/0008-5472.CAN-04-0452 CrossRefGoogle Scholar
  4. 4.
    Chung, S.S., Pandini, A., Annibale, A., Coolen, A.C.C., Thomas, N.S.B., Fraternali, F.: Bridging topological and functional information in protein interaction networks by short loops profiling. Sci. Rep. 5, 8540 (2015). doi: 10.1038/srep08540 ADSCrossRefGoogle Scholar
  5. 5.
    Hinow, P.R., Rietman, E.A., Omar, S.I., Tuszynski, J.A.: Algebraic and topological indices of molecular pathway networks in human cancers. Math. Biosci. Eng. 12(6), 1289–1302 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Benzekry, S.T., Tuszynski, J.A., Rietman, E.A., Klement, G.L.: Design principles for cancer therapy guided by changes in complexity of protein–protein interaction networks. Biol. Direct 10, 32 (2015). doi: 10.1186/s13062-015-0058-5 CrossRefGoogle Scholar
  7. 7.
    Breitkreutz, D., Hlatky, L., Rietman, E., Tuszynski, J.A.: Molecular signaling network complexity is correlated with cancer patient survivability. Proc. Natl. Acad. Sci. U.S.A. 109, 9209–9212 (2012). doi: 10.1073/pnas.1201416109 ADSCrossRefGoogle Scholar
  8. 8.
    Takemoto, K., Kihara, K.: Modular organization of cancer signaling networks is associated with patient survivability. Biosystems 113, 149–154 (2013). doi: 10.1016/j.biosystems.2013.06.003 CrossRefGoogle Scholar
  9. 9.
    Gronholm, T., Annila, A.: Natural distribution. Math. Biosci. 210, 659–667 (2007). doi: 10.1016/j.mbs.2007.07.004 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Richmod, P., Solomon, S.: Power laws are disguised Boltzmann laws. Int. J. Mod. Phys. C 12, 333 (2001). doi: 10.1142/S0129183101001754 ADSCrossRefGoogle Scholar
  11. 11.
    Rashevsky, N.: Topology and life: in search of general mathematical principles in biology and sociology. Bull. Math. Biophys. 16, 317–348 (1954). doi: 10.1007/BF02484495 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dehmer, M., Mowshowitz, A.: A history of graph entropy measures. Inf. Sci. 181, 57–78 (2011). doi: 10.1016/j.ins.2010.08.041 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Demetrius, L., Manke, T.: Robustness and network evolution - a entropic principle. Physica A 346, 682–696 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Manke, T., Demetrius, L., Vingron, M.: An entropic characterization of protein interaction networks and cellular robustness. J. R. Soc. Interface 3, 843–850 (2006). doi: 10.1098/rsif.2006.0140 CrossRefGoogle Scholar
  15. 15.
    West, J., Bianconi, G., Severini, S., Teschendorff, A.E.: Differential network entorpy reveasl cancer system hallmarks. Sci. Rep. 2, 802 (2012). doi: 10.1038/srep00802 ADSCrossRefGoogle Scholar
  16. 16.
    Liu, R., Li, M., Liu, Z.P., Wu, J., Chen, L., Aihara, K.: Identifying critical transitions and their leading biomolecular networks in complex diseases. Sci. Rep. 2, 813 (2012). doi: 10.1038/srep00813 ADSGoogle Scholar
  17. 17.
    Berretta, R., Moscato, P.: Cancer biomarker discovery: the entropic hallmark. PLoS One 5, e12262 (2010). doi: 10.1371/journal.pone.0012262 ADSCrossRefGoogle Scholar
  18. 18.
    Banerji, C.R.S., Miranda-Saavedra, D., Severini, S., Widschwendter, M., Enver, T., Zhou, J.X., Teschendroff, A.E.: Cellular network entropy as the energy potential in Wadddingtons’s differentiation landscape. Sci. Rep. 3, 3039 (2013). doi: 10.1038/srep03039 ADSCrossRefGoogle Scholar
  19. 19.
    Greenbaum, D., Colangelo, C., Williams, K., Gerstein, M.: Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4, 117 (2003). doi: 10.1186/gb-2003-4-9-117 CrossRefGoogle Scholar
  20. 20.
    Maier, T., Guell, M., Serrano, L.: Correlation of mRNA and protein in complex biological samples. FEBS Lett. 583, 3966–3973 (2009). doi: 10.1016/j.febslet.2009.10.036 CrossRefGoogle Scholar
  21. 21.
    Kim, M.S., Pinto, S.M., Getnet, D., Nirujogi, R.S., Manda, S.S., Chaerkady, R., Madugundu, A.K., Kelkar, D.S., Isserlin, R., Jain, S., et al.: A draft map of the human proteome. Nature 509, 575–581 (2014). doi: 10.1038/nature13302 ADSCrossRefGoogle Scholar
  22. 22.
    Wilhelm, M., Schlegl, J., Hahne, H., Moghaddas Gholami, A., Lieberenz, M., Savitski, M.M., Ziegler, E., Butzmann, L., Gessulat, S., Marx, H., et al.: Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 (2014). doi: 10.1038/nature13319 ADSCrossRefGoogle Scholar
  23. 23.
    Huang, S., Eichler, G., Bar-Yam, Y., Ingber, D.E.: Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys. Rev. Lett. 94, 128701 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Spindel, S., Sapsford, K.: Evaluation of optical detection platforms for multiplexed detection of proteins and the need for point-of-care biosensors for clinical use. Sensors 14, 22313–22341 (2014)CrossRefGoogle Scholar
  25. 25.
    Breitkreutz, B.J., Stark, C., Tyers, M.: The GRID: the general repository for interaction datasets. Genome Biol. 3, PREPRINT0013 (2002)Google Scholar
  26. 26.
    Maskill, H.: The Physical Basis of Organic Chemistry. Oxford University Press, New York (1986)Google Scholar
  27. 27.
    Demetrius, L.: The origin of allometric scaling laws in biology. J. Theor. Biol. 243, 455–467 (2006)CrossRefGoogle Scholar
  28. 28.
    Anderson, J.: An Introduction to Neural Networks. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  29. 29.
    Demirel, Y., Sandler, S.I.: Thermodynamics and bioenergetics. Biophys. Chem. 97, 87–111 (2002)CrossRefGoogle Scholar
  30. 30.
    Demirel, Y.: Modeling of thermodynamically coupled reaction-transport systems. Chem. Eng. J. 139, 106–117 (2008)CrossRefGoogle Scholar
  31. 31.
    Lucia, U.: Different chemical reaction times between normal and solid cancer cells. Med. Hypotheses 81, 58–61 (2013)CrossRefGoogle Scholar
  32. 32.
    Cancer Genome Atlas Research Network Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., Stuart, J.M.: The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013). doi: 10.1038/ng.2764 CrossRefGoogle Scholar
  33. 33.
    Cancer Genome Atlas Research, N.: Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013). doi: 10.1038/nature12222 ADSCrossRefGoogle Scholar
  34. 34.
    Cancer Genome Atlas Research Network: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008). doi: 10.1038/nature07385 CrossRefGoogle Scholar
  35. 35.
    Cancer Genome Atlas Research Network: Comprehensive moleclar characterization of human colon and rectal cancer. Nature 487, 330–337 (2012). doi: 10.1038/nature11252 ADSCrossRefGoogle Scholar
  36. 36.
    Cancer Genome Atlas, N.: Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012). doi: 10.1038/nature11412 ADSCrossRefGoogle Scholar
  37. 37.
    Cancer Genome Atlas Research Network: Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012). doi: 10.1038/nature11404 ADSCrossRefGoogle Scholar
  38. 38.
    Cancer Genome Atlas Research Network, Kandoth, C., Schultz, N., Cherniack, A.D., Akbani, R., Liu, Y., Shen, H., Robertson, A.G., Pashtan, I., Shen, R., et al.: Integrated genomic characterization of endometrial carcinoma. Nature 497, 67–73 (2013). doi: 10.1038/nature12113 ADSCrossRefGoogle Scholar
  39. 39.
    Breitkreutz, B.J., Stark, C., Reguly, T., Boucher, L., Breitkreutz, A., Livstone, M., Oughtred, R., Lackner, D.H., Bahler, J., Wood, V., et al.: The Biogrid Interaction Database: 2008 update. Nucleic Acids Res. 36, D637–640 (2008). doi: 10.1093/nar/gkm1001 CrossRefGoogle Scholar
  40. 40.
    Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–539 (2006). doi: 10.1093/nar/gkj109 CrossRefGoogle Scholar
  41. 41.
    Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003). doi: 10.1101/gr.1239303 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Edward A. Rietman
    • 1
  • John Platig
    • 2
    • 3
  • Jack A. Tuszynski
    • 4
    • 5
  • Giannoula Lakka Klement
    • 6
    • 7
    • 8
  1. 1.Information and Computer Science DepartmentUniversity of MassachusettsAmherstUSA
  2. 2.Department of Biostatistics and Computational BiologyDana-Farber Cancer InstituteBostonUSA
  3. 3.Department of BiostatisticsHarvard Chan School of Public HealthBostonUSA
  4. 4.Department of Oncology, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
  5. 5.Department of PhysicsUniversity of AlbertaEdmontonCanada
  6. 6.Pediatric Hematology OncologyFloating Hospital for Children at Tufts Medical CenterBostonUSA
  7. 7.Sackler School of Graduate Biomedical SciencesTufts UniversityBostonUSA
  8. 8.Molecular Oncology Research InstituteTufts Medical CenterBostonUSA

Personalised recommendations