Advertisement

Journal of Biological Physics

, Volume 42, Issue 3, pp 317–338 | Cite as

A two-step patterning process increases the robustness of periodic patterning in the fly eye

  • Avishai Gavish
  • Naama Barkai
Original Paper

Abstract

Complex periodic patterns can self-organize through dynamic interactions between diffusible activators and inhibitors. In the biological context, self-organized patterning is challenged by spatial heterogeneities (‘noise’) inherent to biological systems. How spatial variability impacts the periodic patterning mechanism and how it can be buffered to ensure precise patterning is not well understood. We examine the effect of spatial heterogeneity on the periodic patterning of the fruit fly eye, an organ composed of ∼800 miniature eye units (ommatidia) whose periodic arrangement along a hexagonal lattice self-organizes during early stages of fly development. The patterning follows a two-step process, with an initial formation of evenly spaced clusters of ∼10 cells followed by a subsequent refinement of each cluster into a single selected cell. Using a probabilistic approach, we calculate the rate of patterning errors resulting from spatial heterogeneities in cell size, position and biosynthetic capacity. Notably, error rates were largely independent of the desired cluster size but followed the distributions of signaling speeds. Pre-formation of large clusters therefore greatly increases the reproducibility of the overall periodic arrangement, suggesting that the two-stage patterning process functions to guard the pattern against errors caused by spatial heterogeneities. Our results emphasize the constraints imposed on self-organized patterning mechanisms by the need to buffer stochastic effects.

Author summary

Complex periodic patterns are common in nature and are observed in physical, chemical and biological systems. Understanding how these patterns are generated in a precise manner is a key challenge. Biological patterns are especially intriguing, as they are generated in a noisy environment; cell position and cell size, for example, are subject to stochastic variations, as are the strengths of the chemical signals mediating cell-to-cell communication. The need to generate a precise and robust pattern in this ‘noisy’ environment restricts the space of patterning mechanisms that can function in the biological setting. Mathematical modeling is useful in comparing the sensitivity of different mechanisms to such variations, thereby highlighting key aspects of their design.

We use mathematical modeling to study the periodic patterning of the fruit fly eye. In this system, a highly ordered lattice of differentiated cells is generated in a two-dimensional cell epithelium. The pattern is first observed by the appearance of evenly spaced clusters of ∼10 cells that express specific genes. Each cluster is subsequently refined into a single cell, which initiates the formation and differentiation of a miniature eye unit, the ommatidium. We formulate a mathematical model based on the known molecular properties of the patterning mechanism, and use a probabilistic approach to calculate the errors in cluster formation and refinement resulting from stochastic cell-to-cell variations (‘noise’) in different quantitative parameters. This enables us to define the parameters most influencing noise sensitivity. Notably, we find that this error is roughly independent of the desired cluster size, suggesting that large clusters are beneficial for ensuring the overall reproducibility of the periodic cluster arrangement. For the stage of cluster refinement, we find that rapid communication between cells is critical for reducing error. Our work provides new insights into the constraints imposed on mechanisms generating periodic patterning in a realistic, noisy environment, and in particular, discusses the different considerations in achieving optimal design of the patterning network.

Keywords

Drosophila eye Robust periodic patterning Mathematical modeling Noise Spatial heterogeneity Lateral inhibition 

Notes

Acknowledgments

We thank I. Averbukh and M. Chapal from the Barkai laboratory for useful discussion. This work was funded by grants from the ERC and the Minerva Foundation to N. B. who is an incumbent of the Lorna Greenberg Scherzer Professorial Chair.

Supplementary material

10867_2016_9409_MOESM1_ESM.pdf (436 kb)
(PDF 436 KB)

References

  1. 1.
    Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002). doi: 10.1126/science.1070919 ADSCrossRefGoogle Scholar
  2. 2.
    Bar-Even, A., Paulsson, J., Maheshri, N., Carmi, M., O’Shea, E., Pilpel, Y., Barkai, N.: Noise in protein expression scales with natural protein abundance. Nat. Genet. 38, 636–43 (2006). doi: 10.1038/ng1807 CrossRefGoogle Scholar
  3. 3.
    Newman, J.R.S., Weissman, J.S.: Systems biology: many things from one. Nature 444, 561–562 (2006). doi: 10.1038/nature05407 ADSCrossRefGoogle Scholar
  4. 4.
    Barkai, N., Shilo, B.-Z.: Variability and robustness in biomolecular systems. Mol. Cell 28, 755–60 (2007). doi: 10.1016/j.molcel.2007.11.013 CrossRefGoogle Scholar
  5. 5.
    Stanojević, D., Hoey, T., Levine, M.: Sequence-specific DNA-binding activities of the gap proteins encoded by hunchback and Krüppel in Drosophila. Nature 341, 331–335 (1989). doi: 10.1038/341331a0 ADSCrossRefGoogle Scholar
  6. 6.
    Eldar, A., Rosin, D., Shilo, B.-Z., Barkai, N.: Self-enhanced ligand degradation underlies robustness of morphogen gradients. Dev. Cell 5, 635–646 (2003). http://www.ncbi.nlm.nih.gov/pubmed/14536064 CrossRefGoogle Scholar
  7. 7.
    Eldar, A., Shilo, B -Z, Barkai, N.: Elucidating mechanisms underlying robustness of morphogen gradients. Curr. Opin. Genet. Dev. 14, 435–439 (2004). doi: 10.1016/j.gde.2004.06.009 CrossRefGoogle Scholar
  8. 8.
    Voas, M.G., Rebay, I.: Signal integration during development: insights from the Drosophila eye. Dev. Dyn. 229, 162–175 (2004). doi: 10.1002/dvdy.10449 CrossRefGoogle Scholar
  9. 9.
    Kumar, J.P.: Building an ommatidium one cell at a time. Dev. Dyn. 241, 136–149 (2012). doi: 10.1002/dvdy.23707 CrossRefGoogle Scholar
  10. 10.
    Kumar, J.P.: My what big eyes you have: how the Drosophila retina grows. Dev. Neurobiol. 71, 1133–1152 (2011). doi: 10.1002/dneu.20921 CrossRefGoogle Scholar
  11. 11.
    Frankfort, B.J., Mardon, G.: R8 development in the Drosophila eye: a paradigm for neural selection and differentiation. Development 129, 1295–1306 (2002). http://www.ncbi.nlm.nih.gov/pubmed/11880339 Google Scholar
  12. 12.
    Baker, N.E., Mlodzik, M., Rubin, G.M.: Spacing differentiation in the developing Drosophila eye: a fibrinogen-related lateral inhibitor encoded by scabrous. Science 250, 1370–1377 (1990). http://www.ncbi.nlm.nih.gov/pubmed/2175046 ADSCrossRefGoogle Scholar
  13. 13.
    Jarman, A.P., Grell, E.H., Ackerman, L., Jan, L.Y., Jan, Y.N.: Atonal is the proneural gene for Drosophila photoreceptors. Nature 369, 398–400 (1994). doi: 10.1038/369398a0 ADSCrossRefGoogle Scholar
  14. 14.
    Baonza, A., Casci, T., Freeman, M.: A primary role for the epidermal growth factor receptor in ommatidial spacing in the Drosophila eye. Curr. Biol. 11, 396–404 (2001). Available: http://www.ncbi.nlm.nih.gov/pubmed/11301250 CrossRefGoogle Scholar
  15. 15.
    Lubensky, D.K., Pennington, M.W., Shraiman, B.I., Baker, N.E.: A dynamical model of ommatidial crystal formation. Proc. Natl. Acad. Sci. U.S.A. 108, 11145–11150 (2011). doi: 10.1073/pnas.1015302108 ADSCrossRefGoogle Scholar
  16. 16.
    Heberlein, U., Wolff, T., Rubin, G.M.: The TGF β homolog dpp and the segment polarity gene hedgehog are required for propagation of a morphogenetic wave in the Drosophila retina. Cell 75, 913–926 (1993). doi: 10.1016/0092-8674(93)90535-X CrossRefGoogle Scholar
  17. 17.
    Roignant, J.-Y., Treisman, J.E.: Pattern formation in the Drosophila eye disc. Int. J. Dev. Biol. 53, 795–804 (2009). doi: 10.1387/ijdb.072483jr CrossRefGoogle Scholar
  18. 18.
    Lee, E.C., Hu, X., Yu, S.Y., Baker, N.E.: The scabrous gene encodes a secreted glycoprotein dimer and regulates proneural development in Drosophila eyes. Mol. Cell. Biol 16, 1179–1188 (1996). http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=231100&tool=pmcentrez&rendertype=abstract CrossRefGoogle Scholar
  19. 19.
    Baonza, A., Freeman, M.: Notch signalling and the initiation of neural development in the Drosophila eye. Development 128, 3889–3898 (2001). http://www.ncbi.nlm.nih.gov/pubmed/11641214 Google Scholar
  20. 20.
    Barad, O, Rosin, D, Hornstein, E, Barkai, N.: Error minimization in lateral inhibition circuits. Sci. Signal. 3(129), ra51 (2010). doi: 10.1126/scisignal.2000857 CrossRefGoogle Scholar
  21. 21.
    Treisman, J.E.: Retinal differentiation in Drosophila. Wiley Interdiscip. Rev. Dev. Biol. 2, 545–557 (2013). doi: 10.1002/wdev.100 CrossRefGoogle Scholar
  22. 22.
    Ready, D.F., Hanson, T.E., Benzer, S.: Development of the Drosophila retina, a neurocrystalline lattice. Dev. Biol. 53, 217–240 (1976). doi: 10.1016/0012-1606(76)90225-6 CrossRefGoogle Scholar
  23. 23.
    Pennington, M.W., Lubensky, D.K.: Switch and template pattern formation in a discrete reaction-diffusion system inspired by the Drosophila eye. Eur. Phys. J. E Soft. Matter. 33, 129–148 (2010). doi: 10.1140/epje/i2010-10647-6 CrossRefGoogle Scholar
  24. 24.
    Roy, S., Hsiung, F., Kornberg, T.B.: Specificity of Drosophila cytonemes for distinct signaling pathways. Science 332, 354–358 (2011). doi: 10.1126/science.1198949 ADSCrossRefGoogle Scholar
  25. 25.
    Chou, Y.-H., Chien, C.-T.: Scabrous controls ommatidial rotation in the Drosophila compound eye. Dev. Cell 3, 839–850 (2002). http://www.ncbi.nlm.nih.gov/pubmed/12479809 CrossRefGoogle Scholar
  26. 26.
    Gavish, A., Shwartz, A., Weizman, A., Schejter, E., Shilo, B.Z., Barkai, N.: Periodic patterning of the Drosophila eye is stabilized by the diffusible activator Scabrous. Nat. Commun. 7, 10461. doi: 10.1038/ncomms10461

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Molecular GeneticsWeizmann institute of ScienceRehovotIsrael
  2. 2.Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations