Advertisement

Journal of Biological Physics

, Volume 42, Issue 2, pp 235–245 | Cite as

Diploid versus haploid models of neutral speciation

  • David M. SchneiderEmail author
  • Elizabeth M. Baptestini
  • Marcus A. M. de Aguiar
Original Paper

Abstract

Neutral models of speciation based on isolation by distance and assortative mating, termed topopatric, have shown to be successful in describing abundance distributions and species–area relationships. Previous works have considered this type of process in the context of haploid genomes. Here we discuss the implementation of two schemes of dominance to analyze the effects of diploidy: a complete dominance model in which one allele dominates over the other and a perfect codominant model in which heterozygous genotypes give rise to a third phenotype. In the case of complete dominance, we observe that speciation requires stronger spatial inbreeding in comparison to the haploid model. For perfect codominance, instead, speciation demands stronger genetic assortativeness. Nevertheless, once speciation is established, the three models predict the same abundance distributions even at the quantitative level, revealing the robustness of the original mechanism to describe biodiversity features.

Keywords

Models of dominance Assortative mating Individual-based simulations 

Notes

Acknowledgments

This work was partially supported by CNPq and FAPESP.

References

  1. 1.
    Coyne J. A., Orr H. A.: Speciation. 1st ed. Sinauer Associates, Inc (2004)Google Scholar
  2. 2.
    Nosil, P.: Ecological Speciation. Oxford University Press, Oxford (2012)CrossRefGoogle Scholar
  3. 3.
    Gavrilets, S.: Models of speciation: Where are we now? J. Hered. 105(Special Issue), 743–755 (2014)Google Scholar
  4. 4.
    Hubbell, S.: The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton (2001)Google Scholar
  5. 5.
    Kopp, M.: Speciation and the neutral theory of biodiversity. BioEssays 32, 564–570 (2010)Google Scholar
  6. 6.
    Etienne, R.S., Haegeman, B.: The neutral theory of biodiversity with random fission speciation. Theor. Ecol. 4, 87–109 (2011)CrossRefGoogle Scholar
  7. 7.
    Rosindell, J., Phillimore, A.B.: A unified model of island biogeography sheds light on the zone of radiation. Ecol. Lett. 14, 552–560 (2011)CrossRefGoogle Scholar
  8. 8.
    Mayr, E.: Animal Species and Evolution. Belknap Press, Cambridge (1963)CrossRefGoogle Scholar
  9. 9.
    Rozenzweig, M.L.: Tempo and mode of speciation. Science 277, 1622–1623 (1997)CrossRefGoogle Scholar
  10. 10.
    Dieckmann, U., Doebeli, M.: On the origin of species by sympatric speciation. Nature 400, 354–357 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Leimar, O., Doebeli, M., Dieckmann, U.: Evolution of phenotypic clusters through competition and local adaptation along an environmental gradient. Evolution 62(4), 807–822 (2008)CrossRefGoogle Scholar
  12. 12.
    Baptestini, E.M., de Aguiar, M.A.M., Araujo, M.S., Bolnick, D.: The shape of the competition and carrying capacity kernels affects the likelihood of disruptive selection. J. Theor. Biol. 259, 5–11 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Pinho, C., Hey, J.: Divergence with gene flow: models and data. Annu. Rev. Ecol. Evol. Syst. 41, 215–230 (2010)CrossRefGoogle Scholar
  14. 14.
    de Aguiar, M.A.M., Baranger, M., Baptestini, E.M., Kaufman, L., Bar-Yam, Y.: Global patterns of speciation and diversity. Nature 460, 384–387 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Hoelzer, G.A., Drewes, R., Meier, J., Doursat, R.: Isolation-by-distance and outbreeding depression are sufficient to drive parapatric speciation in the absence of environmental influences. PLoS Comput. Biol. 4, e1000126 (2008)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Melian, C.J., Alonso, D., Vázquez, D.P., Regetz, J., Allesina, S.: Frequency-dependent selection predicts patterns of radiations and biodiversity. PLoS Comp. Biol. 6, e100089 (2010)CrossRefGoogle Scholar
  17. 17.
    Fuentes, M.A., Kuperman, M.N., Kenkre, V.M.: Nonlocal interaction effects on pattern formation in population dynamics. Phys. Rev. Lett. 91(15), 158104 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Meyer, M., Havlin, S., Bunde, A.: Clustering of independently diffusing individuals by birth and death processes. Phys. Rev. E 54, 5567–5570 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    Young, W.R., Roberts, A.J., Stuhne, G.: Reproductive pair correlations and the clustering of organisms. Nature 412, 328–331 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Houchmandzadeh, B.: Clustering of diffusing organisms. Phys. Rev. E 66, 052902 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    Lawson, D.J., Jensen, H.J.: Understanding clustering in type space using field theoretic techniques. Bull. Math. Biol. 70, 1065–1081 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Irwin, D.E., Bensch, S., Price, T.D.: Speciation in a ring. Nature 409, 333–337 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    Irwin, D.E., Bensch, S., Irwin, J.H., Price, T.D.: Speciation by distance in a ring species. Science 307, 414–416 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Ashlock, D., Clare, E.L., von Königslöw, T.E., Ashlock, W.: Evolution and instability in ring species complexes: an in silico approach to the study of speciation. J. Theor. Biol. 264, 1202–1213 (2010)CrossRefGoogle Scholar
  25. 25.
    Martins, A.B., de Aguiar, M.A.M., Bar-Yam, Y.: Evolution and stability of ring species. Proc. Natl. Acad. Sci. U.S.A. 110, 5080–5084 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Scott, A.D., King, D.M., Marić, N., Bahar, S.: Clustering and phase transitions on a neutral landscape. Europhys. Lett. 102(6), 68003 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Baptestini, E.M., de Aguiar, M.A.M., Bar-Yam, Y.: The role of sex separation in neutral speciation. J. Theor. Ecol. 6, 213–223 (2013)CrossRefGoogle Scholar
  28. 28.
    Wright, S.: Breeding structure of populations in relation to speciation. Am. Nat. 74, 232–248 (1940)CrossRefGoogle Scholar
  29. 29.
    Wright, S.: Isolation by distance. Genetics 28, 114–138 (1943)Google Scholar
  30. 30.
    Kimura, M., Weiss, G.H.: The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49, 561–576 (1964)Google Scholar
  31. 31.
    Higgs, P., Derrida, B.: Genetic distance and species formation in evolving populations. J. Mol. Evol. 35, 454–465 (1992)CrossRefGoogle Scholar
  32. 32.
    Dieckmann, U., Doebeli, M.: Evolutionary branching and sympatric speciation caused by different types of ecological interactions. Am. Nat. 156, S77–S101 (2000)CrossRefGoogle Scholar
  33. 33.
    Doebeli, M., Dieckmann, U.: Speciation along environmental gradients. Nature 421, 259–264 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    Bolnick, D.I., Kirkpatrick, M.: The relationship between intraspecific assortative mating and reproductive isolation between divergent populations. Curr. Zool. 58(3), 484–492 (2012)CrossRefGoogle Scholar
  35. 35.
    Parker, G.A., Partridge, L.: Sexual conflict and speciation. Phil. Trans. R. Soc. B 353, 261–274 (1998)CrossRefGoogle Scholar
  36. 36.
    Schneider, D.M., do Carmo, E., Martins, A.B., de Aguiar, M.A.M.: Toward a theory of topopatric speciation: the role of genetic assortative mating. Physica A 409, 35–47 (2014)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Schneider, D.M., do Carmo, E., de Aguiar, M.A.M.: A dynamical analysis of allele frequencies in populations evolving under assortative mating and mutations. Physica A 421, 54–68 (2015)CrossRefGoogle Scholar
  38. 38.
    de Aguiar, M.A.M., Schneider, D.M., do Carmo, E., Campos, P.R.A., Martins, A.B.: Error catastrophe in populations under similarity-essential recombination. J. Theor. Biol. 374, 48–53 (2015)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Eigen, M., Schuster, P.: The Hypercycle. A principle of natural self-organization. Naturwissenschaften 64, 541–565 (1977)ADSCrossRefGoogle Scholar
  40. 40.
    Schneider, D. M., Martins A. B., de Aguiar M. A. M. The mutation-drift balance in spatially structured populations. In preparationGoogle Scholar
  41. 41.
    Higgs, P.G., Derrida, B.: Stochastic models for species formation in evolving populations. J. Phys. A 24, L985–L991 (1991)ADSCrossRefzbMATHGoogle Scholar
  42. 42.
    Gavrilets, S.: Fitness Landscapes and the Origin of Species. Princeton University Press, Princeton (2004)Google Scholar
  43. 43.
    Mayr E.: In: Arai R., Kato M., Doi Y. (eds) Biodiversity and Evolution. National Science Museum Foundation, Tokyo (1955)Google Scholar
  44. 44.
    de Aguiar, M.A.M., Bar-Yam, Y.: The Moran model as a dynamical process on networks and its implications for neutral speciation. Phys. Rev. E 84, 031901 (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • David M. Schneider
    • 1
    Email author
  • Elizabeth M. Baptestini
    • 1
  • Marcus A. M. de Aguiar
    • 1
  1. 1.Instituto de Física ‘Gleb Wataghin’Universidade Estadual de Campinas, UnicampCampinasBrazil

Personalised recommendations