Journal of Biological Physics

, Volume 40, Issue 2, pp 121–137 | Cite as

THz time scale structural rearrangements and binding modes in lysozyme-ligand interactions

  • K. N. WoodsEmail author
Original Paper


Predicting the conformational changes in proteins that are relevant for substrate binding is an ongoing challenge in the aim of elucidating the functional states of proteins. The motions that are induced by protein-ligand interactions are governed by the protein global modes. Our measurements indicate that the detected changes in the global backbone motion of the enzyme upon binding reflect a shift from the large-scale collective dominant mode in the unbound state towards a functional twisting deformation that assists in closing the binding cleft. Correlated motion in lysozyme has been implicated in enzyme function in previous studies, but detailed characterization of the internal fluctuations that enable the protein to explore the ensemble of conformations that ultimately foster large-scale conformational change is yet unknown. For this reason, we use THz spectroscopy to investigate the picosecond time scale binding modes and collective structural rearrangements that take place in hen egg white lysozyme (HEWL) when bound by the inhibitor (NAG) 3. These protein thermal motions correspond to fluctuations that have a role in both selecting and sampling from the available protein intrinsic conformations that communicate function. Hence, investigation of these fast, collective modes may provide knowledge about the mechanism leading to the preferred binding process in HEWL-(NAG) 3. Specifically, in this work we find that the picosecond time scale hydrogen-bonding rearrangements taking place in the protein hydration shell with binding modify the packing density within the hydrophobic core on a local level. These localized, intramolecular contact variations within the protein core appear to facilitate the large cooperative movements within the interfacial region separating the α- and β- domain that mediate binding. The THz time-scale fluctuations identified in the protein-ligand system may also reveal a molecular mechanism for substrate recognition.


Ligand-binding THz time-scale fluctuations 

Supplementary material

10867_2014_9341_MOESM1_ESM.doc (2.8 mb)
(DOC 2.83 MB)
10867_2014_9341_MOESM2_ESM.pdf (324 kb)
(PDF 323 KB)


  1. 1.
    Koshland, D.E.: Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. U.S.A. 44, 98–104 (1958)CrossRefADSGoogle Scholar
  2. 2.
    Okazaki, K., Takada, S.: Dynamic energy landscape view of coupled binding and protein conformational change: Induced-fit versus population-shift mechanisms. Proc. Natl. Acad. Sci. U.S.A. 105, 11182–11187 (2008)CrossRefADSGoogle Scholar
  3. 3.
    Goh, C.-S., Milburn, D., Gerstein, M.: Conformational changes associated with protein–protein interactions. Curr. Opin. Struct. Biol. 14, 104–109 (2004)CrossRefGoogle Scholar
  4. 4.
    Betts, M.J., Sternberg, M.J.E.: An analysis of conformational changes on protein–protein association: implications for predictive docking. Protein Eng. 12, 271–283 (1999)CrossRefGoogle Scholar
  5. 5.
    Bakan, A., Bahar, I.: The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. Proc. Natl. Acad. Sci. U.S.A. 106, 14349–14354 (2009)CrossRefADSGoogle Scholar
  6. 6.
    Bahar, I.: On the functional significance of soft modes predicted by coarse-grained models for membrane proteins. J. Gen. Physiol. 135, 563–573 (2010)CrossRefADSGoogle Scholar
  7. 7.
    Meireles, L., Gur, M., Bakan, A., Bahar, I.: Pre-existing soft modes of motion uniquely defined by native contact topology facilitate ligand binding to proteins. Protein Sci. 20, 1645–1658 (2011)CrossRefGoogle Scholar
  8. 8.
    Bahar, I., Chennubhotla, C., Tobi, D.: Intrinsic dynamics of enzymes in the unbound state and relation to allosteric regulation. Curr. Opin. Struct. Biol. 17, 633–640 (2007)CrossRefGoogle Scholar
  9. 9.
    Hub, J.S., Groot, B.: Detection of functional modes in protein dynamics. PLoS Comput. Biol. 5, e1000480 (2009)CrossRefGoogle Scholar
  10. 10.
    Limongelli, V., Marinelli, L., Cosconati, S., La Motta, C., Sartini, S., Mugnaini, L., Da Settimo, F., Novellino, E., Parrinello, M.: Sampling protein motion and solvent effect during ligand binding. Proc. Natl. Acad. Sci. U.S.A. 109, 1467–1472 (2012)CrossRefADSGoogle Scholar
  11. 11.
    Setny, P., Baron, R., Kekenes-Huskey, P.M., McCammon, J.A., Dzubiella, J.: Solvent fluctuations in hydrophobic cavity–ligand binding kinetics. Proc. Natl. Acad. Sci. U.S.A. (2013). doi: 10.1073/pnas.1221231110
  12. 12.
    Poole, P., Finney, J.: Solid-phase protein hydration studies. Methods Enzymol. 127, 284–293 (1986)CrossRefGoogle Scholar
  13. 13.
    Wexler, A., Hasegawa, S.: Relative humidity-temperature relationships of some saturated salt solutions in the temperature range 0 to 50 C. J. Res. Natl. Bur. Stan. 53, 19–26 (1954)CrossRefGoogle Scholar
  14. 14.
    Sartor, G., Hallbrucker, A., Mayer, E.: Characterizing the secondary hydration shell on hydrated myoglobin, hemoglobin, and lysozyme powders by its vitrification behavior on cooling and its calorimetric glass– >liquid transition and crystallization behavior on reheating. Biophys. J. 69, 2679–2694 (1995)CrossRefADSGoogle Scholar
  15. 15.
    Roh, J.H., Curtis, J.E., Azzam, S., Novikov, V.N., Peral, I., Chowdhuri, Z., Gregory, R.B., Sokolov, A.P.: Influence of hydration on the dynamics of lysozyme. Biophys. J. 91, 2573–2588 (2006)CrossRefADSGoogle Scholar
  16. 16.
    Xu, J., Plaxco, K., Allen, S.: Collective dynamics of lysozyme in water: terahertz absorption spectroscopy and comparison with theory. J. Phys. Chem. B 110, 24255–24259 (2006)CrossRefGoogle Scholar
  17. 17.
    Knab, J., Chen, J.-Y., Markelz, A.: Hydration dependence of conformational dielectric relaxation of lysozyme. Biophys. J. 90, 2576–2581 (2006)CrossRefADSGoogle Scholar
  18. 18.
    Zakaria, H.A., Fischer, B.M., Bradley, A.P., Jones, I., Abbott, D., Middelberg, A.P.J., Falconer, R.J.: Low-frequency spectroscopic analysis of monomeric and fibrillar lysozyme. Appl. Spectrosc. 65, 260–264 (2011)CrossRefADSGoogle Scholar
  19. 19.
    Stehle, C.I., Abuillan, W., Gompf, B., Dressel, M.: Far-infrared spectroscopy on free-standing protein films under defined temperature and hydration control. J. Chem. Phys. 136, 075102 (2012)CrossRefADSGoogle Scholar
  20. 20.
    Bakan, A., Meireles, L.M., Bahar, I.: ProDy: Protein dynamics inferred from theory and experiments. Bioinformatics 27, 1575–1577 (2011)CrossRefGoogle Scholar
  21. 21.
    Berendsen, J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)CrossRefADSGoogle Scholar
  22. 22.
    Hess, H., Berendsen, J.C., Fraaije, J.G.E.M.: LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997)CrossRefGoogle Scholar
  23. 23.
    Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995)CrossRefADSGoogle Scholar
  24. 24.
    Eyal, E., Yang, L.-W., Bahar, I.: Anisotropic network model: Systematic evaluation and a new web interface. Bioinformatics 22, 2619–2627 (2006)CrossRefGoogle Scholar
  25. 25.
    He, Y., Chen, J.-Y., Knab, J.R., Zheng, W., Markelz, A.G.: Evidence of protein collective motions on the picosecond timescale. Biophys. J. 100, 1058–1065 (2011)CrossRefADSGoogle Scholar
  26. 26.
    Tobi, D., Bahar, I.: Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proc. Natl. Acad. Sci. U.S.A. 102, 18908–18913 (2005)CrossRefADSGoogle Scholar
  27. 27.
    Bruccoleri, R.E., Karplus, M., McCammon, J.A.: The hinge-bending mode of a lysozyme–inhibitor complex. Biopolymers 25, 1767–1802 (1986)CrossRefGoogle Scholar
  28. 28.
    Ding, T., Middelberg, A.P.J., Huber, T., Falconer, R.J.: Far-infrared spectroscopy analysis of linear and cyclic peptides, and lysozyme. Vib. Spectrosc. 61, 144–150 (2012)CrossRefGoogle Scholar
  29. 29.
    Moeller, K.D., Williams, G.P., Steinhauser, S., Hirschmugl, C., Smith, J.C.: Hydration-dependent far-infrared absorption in lysozyme detected using synchrotron radiation. Biophys. J. 61, 276–280 (1992)CrossRefGoogle Scholar
  30. 30.
    Woods, K.N.: Solvent-induced backbone fluctuations and the collective librational dynamics of lysozyme studied by terahertz spectroscopy. Phys. Rev. E 81, 031915 (2010)Google Scholar
  31. 31.
    Diehl, M., Doster, W., Petry, W., Schober, H.: Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering. Biophys. J. 73, 2726–2732 (1997)CrossRefGoogle Scholar
  32. 32.
    Atilgan, A.R., Durell, S.R., Jernigan, R.L., Demirel, M.C., Keskin, O., Bahar, I.: Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80, 505–515 (2001)CrossRefGoogle Scholar
  33. 33.
    Balsera, M.A., Wriggers, W., Oono, Y., Schulten, K.: Principal component analysis and long time protein dynamics. J. Phys. Chem. 100, 2567–2572 (1996)CrossRefGoogle Scholar
  34. 34.
    Haliloglu, T., Bahar, I.: Structure-based analysis of protein dynamics: Comparison of theoretical results for hen lysozyme with X-ray diffraction and NMR relaxation data. Proteins 37, 654–667 (1999)CrossRefGoogle Scholar
  35. 35.
    McCammon, J.A., Gelin, B.R., Karplus, M., Wolynes, P.G.: The hinge-bending mode in lysozyme. Nature 262, 325–326 (1976)CrossRefADSGoogle Scholar
  36. 36.
    Emekli, U., Schneidman-Duhovny, D., Wolfson, H.J., Nussinov, R., Haliloglu, T.: HingeProt: Automated prediction of hinges in protein structures. Proteins 70, 1219–1227 (2008)CrossRefGoogle Scholar
  37. 37.
    Paciaroni, A., Bizarri, A.R., Cannistraro, S.: Neutron scattering evidence of a boson peak in protein hydration water. Phys. Rev. E 60, R2476–R2479 (1999)CrossRefADSGoogle Scholar
  38. 38.
    Tarek, M., Tobias, D.J.: Effects of solvent damping on side chain and backbone contributions to the protein boson peak. J. Chem. Phys. 115, 1607–1612 (2001)CrossRefADSGoogle Scholar
  39. 39.
    Giraud, G., Karolin, J., Wynne, K.: Low-frequency modes of peptides and globular proteins in solution observed by Ultrafst OHD-RIKES spectroscopy. Biophys. J. 85, 1903–1913 (2003)CrossRefGoogle Scholar
  40. 40.
    Oxtoby, D.W.: Picosecond phase relaxation experiments: A microscopic theory and a new interpretation. J. Chem. Phys. 74, 5371 (1981)CrossRefADSGoogle Scholar
  41. 41.
    Frauenfelder, H., Parak, F., Young, R.D.: Conformational substates in proteins. Annu. Rev. Biophys. Biophys. Chem. 17, 451–479 (1988)CrossRefGoogle Scholar
  42. 42.
    Frauenfelder, H., Sligar, S., Wolynes, P.: The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991)CrossRefADSGoogle Scholar
  43. 43.
    Kumar, S., Ma, B., Tsai, C.-J., Sinha, N., Nussinov, R.: Folding and binding cascades: Dynamic landscapes and population shifts. Protein Sci. 9, 10–19 (2000)CrossRefGoogle Scholar
  44. 44.
    Kubo, R., Toda, M., Hashitusme, N.: Statistical Physics II: Nonequilibrium Statistical Mechanics. Springer, New York (1985)CrossRefGoogle Scholar
  45. 45.
    Ishikawa, H., Kwak, K., Chung, J.K., Kim, S., Fayer, M.D.: Direct observation of fast protein conformational switching. Proc. Natl. Acad. Sci. U.S.A. 105, 8619–8624 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Physics DepartmentCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations