Journal of Biological Physics

, Volume 39, Issue 2, pp 301–325

Design rules for nanomedical engineering: from physical virology to the applications of virus-based materials in medicine

  • Amy M. Wen
  • Pooja H. Rambhia
  • Roger H. French
  • Nicole F. Steinmetz
Original Paper

Abstract

Physical virology seeks to define the principles of physics underlying viral infections, traditionally focusing on the fundamental processes governing virus assembly, maturation, and disassembly. A detailed understanding of virus structure and assembly has facilitated the development and analysis of virus-based materials for medical applications. In this Physical Virology review article, we discuss the recent developments in nanomedicine that help us to understand how physical properties affect the in vivo fate and clinical impact of (virus-based) nanoparticles. We summarize and discuss the design rules that need to be considered for the successful development and translation of virus-based nanomaterials from bench to bedside.

Keywords

Design rules Viral nanoparticles Physical virology Nanotechnology Nanomedicine Drug delivery Long range interactions 

References

  1. 1.
    Longmire, M.R., Ogawa, M., Choyke, P.L., Kobayashi, H.: Biologically optimized nanosized molecules and particles: more than just size. Bioconjug. Chem. 22, 993–1000 (2011)CrossRefGoogle Scholar
  2. 2.
    Cheng, Z., Al Zaki, A., Hui, J.Z., Muzykantov, V.R., Tsourkas, A.: Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338, 903–910 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Malik, N., Wiwattanapatapee, R., Klopsch, R., Lorenz, K., Frey, H., Weener, J.W., Meijer, E.W., Paulus, W., Duncan, R.: Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release 65, 133–148 (2000)CrossRefGoogle Scholar
  4. 4.
    Cheng, Y., Zhao, L., Li, Y., Xu, T.: Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem. Soc. Rev. 40, 2673–2703 (2011)CrossRefGoogle Scholar
  5. 5.
    Semmler-Behnke, M., Kreyling, W.G., Lipka, J., Fertsch, S., Wenk, A., Takenaka, S., Schmid, G., Brandau, W.: Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4, 2108–2111 (2008)CrossRefGoogle Scholar
  6. 6.
    Harashima, H., Hiraiwa, T., Ochi, Y., Kiwada, H.: Size-dependent liposome degradation in blood: in vivo/in vitro correlation by kinetic modeling. J. Drug Target. 3, 253–261 (1995)CrossRefGoogle Scholar
  7. 7.
    Harashima, H., Kume, Y., Yamane, C., Kiwada, H.: Kinetic modeling of liposome degradation in blood circulation. Biopharm. Drug Dispos. 14, 265–270 (1993)CrossRefGoogle Scholar
  8. 8.
    Zhou, J.G., Chen, Y.M.: Research on PEGylation of porcine prothrombin for improving biostability and reducing animal immunogenicity. Bioorg. Med. Chem. Lett. 21, 3268–3272 (2011)CrossRefGoogle Scholar
  9. 9.
    Park, J.B., Kwon, Y.M., Lee, T.Y., Brim, R., Ko, M.C., Sunahara, R.K., Woods, J.H., Yang, V.C.: PEGylation of bacterial cocaine esterase for protection against protease digestion and immunogenicity. J. Control. Release 142, 174–179 (2010)CrossRefGoogle Scholar
  10. 10.
    Basu, A., Yang, K., Wang, M., Liu, S., Chintala, R., Palm, T., Zhao, H., Peng, P., Wu, D., Zhang, Z., Hua, J., Hsieh, M.C., Zhou, J., Petti, G., Li, X., Janjua, A., Mendez, M., Liu, J., Longley, C., Mehlig, M., Borowski, V., Viswanathan, M., Filpula, D.: Structure-function engineering of interferon-beta-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug. Chem. 17, 618–630 (2006)CrossRefGoogle Scholar
  11. 11.
    Yang, Z., Wang, J., Lu, Q., Xu, J., Kobayashi, Y., Takakura, T., Takimoto, A., Yoshioka, T., Lian, C., Chen, C., Zhang, D., Zhang, Y., Li, S., Sun, X., Tan, Y., Yagi, S., Frenkel, E.P., Hoffman, R.M.: PEGylation confers greatly extended half-life and attenuated immunogenicity to recombinant methioninase in primates. Cancer Res. 64, 6673–6678 (2004)CrossRefGoogle Scholar
  12. 12.
    O‘Riordan, C.R., Lachapelle, A., Delgado, C., Parkes, V., Wadsworth, S.C., Smith, A.E., Francis, G.E.: PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum. Gene Ther. 10, 1349–1358 (1999)CrossRefGoogle Scholar
  13. 13.
    Raja, K.S., Wang, Q., Gonzalez, M.J., Manchester, M., Johnson, J.E., Finn, M.G.: Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. Biomacromolecules 3, 472–476 (2003)CrossRefGoogle Scholar
  14. 14.
    Chitale, R.: Merck hopes to extend Gardasil vaccine to men. J. Natl. Cancer Inst. 101, 222–223 (2009)CrossRefGoogle Scholar
  15. 15.
    Liu, T.C., Galanis, E., Kirn, D.: Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat. Clin. Pract. Oncol. 4, 101–117 (2007)CrossRefGoogle Scholar
  16. 16.
    Shirakawa, T.: Clinical trial design for adenoviral gene therapy products. Drug News Perspect. 22, 140–145 (2009)CrossRefGoogle Scholar
  17. 17.
    Manchester, M., Singh, P.: Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv. Drug Deliv. Rev. 58, 1505–1522 (2006)CrossRefGoogle Scholar
  18. 18.
    Kaiser, C.R., Flenniken, M.L., Gillitzer, E., Harmsen, A.L., Harmsen, A.G., Jutila, M.A., Douglas, T., Young, M.J.: Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo. Int. J. Nanomedicine 2, 715–733 (2007)Google Scholar
  19. 19.
    Singh, P., Prasuhn, D., Yeh, R.M., Destito, G., Rae, C.S., Osborn, K., Finn, M.G., Manchester, M.: Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. J. Control. Release 120, 41–50 (2007)CrossRefGoogle Scholar
  20. 20.
    Green, N.K., Herbert, C.W., Hale, S.J., Hale, A.B., Mautner, V., Harkins, R., Hermiston, T., Ulbrich, K., Fisher, K.D., Seymour, L.W.: Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus. Gene Ther. 11, 1256–1263 (2004)CrossRefGoogle Scholar
  21. 21.
    Prangishvili, D., Forterre, P., Garrett, R.A.: Viruses of the Archaea: a unifying view. Nat. Rev. Microbiol. 4, 837–848 (2006)CrossRefGoogle Scholar
  22. 22.
    Rachel, R., Bettstetter, M., Hedlund, B.P., Haring, M., Kessler, A., Stetter, K.O., Prangishvili, D.: Remarkable morphological diversity of viruses and virus-like particles in hot terrestrial environments. Arch. Virol. 147, 2419–2429 (2002)CrossRefGoogle Scholar
  23. 23.
    Anderson, E.A., Isaacman, S., Peabody, D.S., Wang, E.Y., Canary, J.W., Kirshenbaum, K.: Viral nanoparticles donning a paramagnetic coat: conjugation of MRI contrast agents to the MS2 capsid. Nano Lett. 6, 1160–1164 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Hooker, J.M., Datta, A., Botta, M., Raymond, K.N., Francis, M.B.: Magnetic resonance contrast agents from viral capsid shells: a comparison of exterior and interior cargo strategies. Nano Lett. 7, 2207–2210 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Hooker, J.M., O’Neil, J.P., Romanini, D.W., Taylor, S.E., Francis, M.B.: Genome-free viral capsids as carriers for positron emission tomography radiolabels. Mol. Imaging Biol. 10, 182–191 (2008)CrossRefGoogle Scholar
  26. 26.
    Kovacs, E.W., Hooker, J.M., Romanini, D.W., Holder, P.G., Berry, K.E., Francis, M.B.: Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system. Bioconjug. Chem. 18, 1140–1147 (2007)CrossRefGoogle Scholar
  27. 27.
    Loo, L., Guenther, R.H., Lommel, S.A., Franzen, S.: Encapsidation of nanoparticles by red clover necrotic mosaic virus. J. Am. Chem. Soc. 129, 11111–11117 (2007)CrossRefGoogle Scholar
  28. 28.
    Loo, L., Guenther, R.H., Lommel, S.A., Franzen, S.: Infusion of dye molecules into Red clover necrotic mosaic virus. Chem. Commun. (Camb.) 88–90 (2008)Google Scholar
  29. 29.
    Ren, Y., Wong, S.M., Lim, L.Y.: In vitro-reassembled plant virus-like particles for loading of polyacids. J. Gen. Virol. 87, 2749–2754 (2006)CrossRefGoogle Scholar
  30. 30.
    Ren, Y., Wong, S.M., Lim, L.Y.: Folic acid-conjugated protein cages of a plant virus: a novel delivery platform for doxorubicin. Bioconjug. Chem. 18, 836–843 (2007)CrossRefGoogle Scholar
  31. 31.
    Suci, P.A., Berglund, D.L., Liepold, L., Brumfield, S., Pitts, B., Davison, W., Oltrogge, L., Hoyt, K.O., Codd, S., Stewart, P.S., Young, M., Douglas, T.: High-density targeting of a viral multifunctional nanoplatform to a pathogenic, biofilm-forming bacterium. Chem. Biol. 14, 387–398 (2007)CrossRefGoogle Scholar
  32. 32.
    Suci, P.A., Varpness, Z., Gillitzer, E., Douglas, T., Young, M.: Targeting and photodynamic killing of a microbial pathogen using protein cage architectures functionalized with a photosensitizer. Langmuir 23, 12280–12286 (2007)CrossRefGoogle Scholar
  33. 33.
    Bruckman, M.A., Kaur, G., Lee, L.A., Xie, F., Sepulveda, J., Breitenkamp, R., Zhang, X., Joralemon, M., Russell, T.P., Emrick, T., Wang, Q.: Surface modification of tobacco mosaic virus with “click” chemistry. ChemBioChem 9, 519–523 (2008)CrossRefGoogle Scholar
  34. 34.
    Steinmetz, N.F., Mertens, M.E., Taurog, R.E., Johnson, J.E., Commandeur, U., Fischer, R., Manchester, M.: Potato virus X as a novel platform for potential biomedical applications. Nano Lett. 10, 305–312 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Rong, J., Lee, L.A., Li, K., Harp, B., Mello, C.M., Niu, Z., Wang, Q.: Oriented cell growth on self-assembled bacteriophage M13 thin films. Chem. Commun. (Camb.) 5185–5187 (2008)Google Scholar
  36. 36.
    Souza, G.R., Molina, J.R., Raphael, R.M., Ozawa, M.G., Stark, D.J., Levin, C.S., Bronk, L.F., Ananta, J.S., Mandelin, J., Georgescu, M.M., Bankson, J.A., Gelovani, J.G., Killian, T.C., Arap, W., Pasqualini, R.: Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5, 291–296 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    French, R., Parsegian, V., Podgornik, R., Rajter, R., Jagota, A., Luo, J., Asthagiri, D., Chaudhury, M., Chiang, Y., Granick, S., Kalinin, S., Kardar, M., Kjellander, R., Langreth, D., Lewis, J., Lustig, S., Wesolowski, D., Wettlaufer, J., Ching, W., Finnis, M., Houlihan, F., Von Lilienfeld, O., Van Oss, C., Zemb, T.: Long-range interactions in nanoscale science. Rev. Mod. Phys. 82, 1887–1944 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Chandler, D.: Hydrophobicity: two faces of water. Nature 417, 491 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    Israelachvili, J.N.: Intermolecular and Surface Forces, 3rd edn. Academic Press, Waltham, MA (2011)Google Scholar
  40. 40.
    Yildiz, I., Shukla, S., Steinmetz, N.F.: Applications of viral nanoparticles in medicine. Curr. Opin. Biotechnol. 22, 901–908 (2011)Google Scholar
  41. 41.
    Ackler, H., French, R., Chiang, Y.: Comparisons of Hamaker constants for ceramic systems with intervening vacuum or water: from force laws and physical properties. J. Colloid Interface Sci. 179, 460–469 (1996)CrossRefGoogle Scholar
  42. 42.
    Aderem, A., Underhill, D.M.: Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999)CrossRefGoogle Scholar
  43. 43.
    Albanese, A., Tang, P.S., Chan, W.C.: The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012)CrossRefGoogle Scholar
  44. 44.
    Champion, J.A., Mitragotri, S.: Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U.S.A. 103, 4930–4934 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., Discher, D.E.: Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    French, R.: Origins and applications of London dispersion forces and Hamaker constants in ceramics. J. Am. Ceram. Soc. 83, 2117–2146 (2000)CrossRefGoogle Scholar
  47. 47.
    French, R.H., Winey, K.I., Yang, M.K., Qiu, W.: Optical properties and van der Waals–London dispersion interactions of polystyrene determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry. Aust. J. Chem. 60, 251–263 (2007)CrossRefGoogle Scholar
  48. 48.
    Moghimi, S.M., Hunter, A.C., Murray, J.C.: Nanomedicine: current status and future prospects. FASEB J. 19, 311–330 (2005)CrossRefGoogle Scholar
  49. 49.
    Brunel, F.M., Lewis, J.D., Destito, G., Steinmetz, N.F., Manchester, M., Stuhlmann, H., Dawson, P.E.: Hydrazone ligation strategy to assemble multifunctional viral nanoparticles for cell imaging and tumor targeting. Nano Lett. 10, 1093–1097 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    Steinmetz, N.F., Ablack, A.L., Hickey, J.L., Ablack, J., Manocha, B., Mymryk, J.S., Luyt, L.G., Lewis, J.D.: Intravital imaging of human prostate cancer using viral nanoparticles targeted to gastrin-releasing Peptide receptors. Small 7, 1664–1672 (2011)CrossRefGoogle Scholar
  51. 51.
    Hovlid, M.L., Steinmetz, N.F., Laufer, B., Lau, J.L., Kuzelka, J., Wang, Q., Hyypia, T., Nemerow, G.R., Kessler, H., Manchester, M., Finn, M.G.: Guiding plant virus particles to integrin-displaying cells. Nanoscale 4, 3698–3705 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    Pasqualini, R., Koivunen, E., Ruoslahti, E.: Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat. Biotechnol. 15, 542–546 (1997)CrossRefGoogle Scholar
  53. 53.
    Hajitou, A., Trepel, M., Lilley, C.E., Soghomonyan, S., Alauddin, M.M., Marini, F.C., 3rd, Restel, B.H., Ozawa, M.G., Moya, C.A., Rangel, R., Sun, Y., Zaoui, K., Schmidt, M., von Kalle, C., Weitzman, M.D., Gelovani, J.G., Pasqualini, R., Arap, W.: A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell 125, 385–398 (2006)CrossRefGoogle Scholar
  54. 54.
    Souza, G.R., Christianson, D.R., Staquicini, F.I., Ozawa, M.G., Snyder, E.Y., Sidman, R.L., Miller, J.H., Arap, W., Pasqualini, R.: Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc. Natl. Acad. Sci. U.S.A. 103, 1215–1220 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    Huang, R.K., Steinmetz, N.F., Fu, C.Y., Manchester, M., Johnson, J.E.: Transferrin-mediated targeting of bacteriophage HK97 nanoparticles into tumor cells. Nanomedicine (Lond.) 6, 55–68 (2011)CrossRefGoogle Scholar
  56. 56.
    Brown, W.L., Mastico, R.A., Wu, M., Heal, K.G., Adams, C.J., Murray, J.B., Simpson, J.C., Lord, J.M., Taylor-Robinson, A.W., Stockley, P.G.: RNA bacteriophage capsid-mediated drug delivery and epitope presentation. Intervirology 45, 371–380 (2002)CrossRefGoogle Scholar
  57. 57.
    Sen Gupta, S., Kuzelka, J., Singh, P., Lewis, W.G., Manchester, M., Finn, M.G.: Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. Bioconjug. Chem. 16, 1572–1579 (2005)CrossRefGoogle Scholar
  58. 58.
    Singh, P., Destito, G., Schneemann, A., Manchester, M.: Canine parvovirus-like particles, a novel nanomaterial for tumor targeting. J. Nanobiotechnol. 4, 2 (2006)CrossRefGoogle Scholar
  59. 59.
    Destito, G., Yeh, R., Rae, C.S., Finn, M.G., Manchester, M.: Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem. Biol. 14, 1152–1162 (2007)CrossRefGoogle Scholar
  60. 60.
    Eto, Y., Yoshioka, Y., Mukai, Y., Okada, N., Nakagawa, S.: Development of PEGylated adenovirus vector with targeting ligand. Int. J. Pharm. 354, 3–8 (2008)CrossRefGoogle Scholar
  61. 61.
    Arnida, Janát-Amsbury, M.M., Ray, A., Peterson, C.M., Ghandehari, H.: Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur. J. Pharm. Biopharm. 77, 417–423 (2011)CrossRefGoogle Scholar
  62. 62.
    Arnida, Malugin, A., Ghandehari, H.: Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J. Appl. Toxicol. 30, 212–217 (2010)Google Scholar
  63. 63.
    Gratton, S.E.A., Ropp, P.A., Pohlhaus, P.D., Luft, J.C., Madden, V.J., Napier, M.E., DeSimone, J.M.: The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U.S.A. 105, 11613–11618 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    Hillaireau, H., Couvreur, P.: Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 66, 2873–2896 (2009)CrossRefGoogle Scholar
  65. 65.
    Wu, Z., Chen, K., Yildiz, I., Dirksen, A., Fischer, R., Dawson, P.E., Steinmetz, N.F.: Development of viral nanoparticles for efficient intracellular delivery. Nanoscale 4, 3567–3576 (2012)ADSCrossRefGoogle Scholar
  66. 66.
    Vacha, R., Martinez-Veracoechea, F.J., Frenkel, D.: Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett. 11, 5391–5395 (2011)ADSCrossRefGoogle Scholar
  67. 67.
    Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28, 693–703 (1973)Google Scholar
  68. 68.
    Gao, H., Shi, W., Freund, L.B.: Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. U.S.A. 102, 9469–9474 (2005)ADSCrossRefGoogle Scholar
  69. 69.
    Chithrani, B.D., Ghazani, A.A., Chan, W.C.: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668 (2006)ADSCrossRefGoogle Scholar
  70. 70.
    Aoyama, Y., Kanamori, T., Nakai, T., Sasaki, T., Horiuchi, S., Sando, S., Niidome, T.: Artificial viruses and their application to gene delivery. Size-controlled gene coating with glycocluster nanoparticles. J. Am. Chem. Soc. 125, 3455–3457 (2003)CrossRefGoogle Scholar
  71. 71.
    Desai, M.P., Labhasetwar, V., Walter, E., Levy, R.J., Amidon, G.L.: The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm. Res. 14, 1568–1573 (1997)CrossRefGoogle Scholar
  72. 72.
    Jiang, W., Kim, B.Y.S., Rutka, J.T., Chan, W.C.W.: Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008)ADSCrossRefGoogle Scholar
  73. 73.
    Nakai, T., Kanamori, T., Sando, S., Aoyama, Y.: Remarkably size-regulated cell invasion by artificial viruses. Saccharide-dependent self-aggregation of glycoviruses and its consequences in glycoviral gene delivery. J. Am. Chem. Soc. 125, 8465–8475 (2003)CrossRefGoogle Scholar
  74. 74.
    Osaki, F., Kanamori, T., Sando, S., Sera, T., Aoyama, Y.: A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J. Am. Chem. Soc. 126, 6520–6521 (2004)CrossRefGoogle Scholar
  75. 75.
    Prabha, S., Zhou, W.Z., Panyam, J., Labhasetwar, V.: Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int. J. Pharm. 244, 105–115 (2002)CrossRefGoogle Scholar
  76. 76.
    Lee, S.-Y., Ferrari, M., Decuzzi, P.: Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 20, 495101 (2009)CrossRefGoogle Scholar
  77. 77.
    Gentile, F., Chiappini, C., Fine, D., Bhavane, R.C., Peluccio, M.S., Cheng, M.M.-C., Liu, X., Ferrari, M., Decuzzi, P.: The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J. Biomech. 41, 2312–2318 (2008)CrossRefGoogle Scholar
  78. 78.
    Toy, R., Hayden, E., Shoup, C., Baskaran, H., Karathanasis, E.: The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22, 115101 (2011)ADSCrossRefGoogle Scholar
  79. 79.
    Christian, D.A., Cai, S., Garbuzenko, O.B., Harada, T., Zajac, A.L., Minko, T., Discher, D.E.: Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol. Pharm. 6, 1343–1352 (2009)CrossRefGoogle Scholar
  80. 80.
    Yang, K., Ma, Y.Q.: Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat. Nanotechnol. 5, 579–583 (2010)ADSCrossRefGoogle Scholar
  81. 81.
    Qiu, Y., Liu, Y., Wang, L., Xu, L., Bai, R., Ji, Y., Wu, X., Zhao, Y., Li, Y., Chen, C.: Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31, 7606–7619 (2010)CrossRefGoogle Scholar
  82. 82.
    Chithrani, B.D., Ghazani, A.A., Chan, W.C.W.: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668 (2006)ADSCrossRefGoogle Scholar
  83. 83.
    Nan, A., Bai, X., Son, S.J., Lee, S.B., Ghandehari, H.: Cellular uptake and cytotoxicity of silica nanotubes. Nano Lett. 8, 2150–2154 (2008)ADSCrossRefGoogle Scholar
  84. 84.
    Chithrani, B.D., Chan, W.C.W.: Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542–1550 (2007)ADSCrossRefGoogle Scholar
  85. 85.
    Schaeublin, N.M., Braydich-Stolle, L.K., Maurer, E.I., Park, K., MacCuspie, R.I., Afrooz, A.R., Vaia, R.A., Saleh, N.B., Hussain, S.M.: Does shape matter? Bioeffects of gold nanomaterials in a human skin cell model. Langmuir 28, 3248–3258 (2012)CrossRefGoogle Scholar
  86. 86.
    Rajter, R.F., French, R.H., Ching, W.Y., Podgornik, R., Parsegian, V.A.: Chirality-dependent properties of carbon nanotubes: electronic structure, optical dispersion properties, Hamaker coefficients and van der Waals–London dispersion interactions. RSC Adv. 3, 823–842 (2013)Google Scholar
  87. 87.
    Rajter, R., French, R.H.: Van der Waals-London dispersion interaction framework for experimentally realistic carbon nanotube systems. Int. J. Mater. Res. 101, 27–42 (2010)CrossRefGoogle Scholar
  88. 88.
    Decuzzi, P., Pasqualini, R., Arap, W., Ferrari, M.: Intravascular delivery of particulate systems: does geometry really matter? Pharm. Res. 26, 235–243 (2009)CrossRefGoogle Scholar
  89. 89.
    Goldman, A.J., Cox, R.G., Brenner, H.: Slow viscous motion of a sphere parallel to a plane wall—I Motion through a quiescent fluid. Chem. Eng. Sci. 22, 637–651 (1967)CrossRefGoogle Scholar
  90. 90.
    Gavze, E., Shapiro, M.: Motion of inertial spheroidal particles in a shear flow near a solid wall with special application to aerosol transport in microgravity. J. Fluid Mech. 371, 59–79 (1998)ADSMATHCrossRefGoogle Scholar
  91. 91.
    Fåhræus, R., Lindqvist, T.: The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96, 562–568 (1931)Google Scholar
  92. 92.
    Decuzzi, P., Lee, S., Bhushan, B., Ferrari, M.: A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng. 33, 179–190 (2005)CrossRefGoogle Scholar
  93. 93.
    Koudelka, K.J., Destito, G., Plummer, E.M., Trauger, S.A., Siuzdak, G., Manchester, M.: Endothelial targeting of cowpea mosaic virus via surface vimentin. PLoS Pathog. 81, 1632–1640 (2009)Google Scholar
  94. 94.
    Koudelka, K.J., Rae, C.S., Gonzalez, M.J., Manchester, M.: Interaction between a 54-kiloDalton mammalian cell surface protein and cowpea mosaic virus. J. Virol. 81, 1632–1640 (2007)CrossRefGoogle Scholar
  95. 95.
    Lewis, J.D., Destito, G., Zijlstra, A., Gonzalez, M.J., Quigley, J.P., Manchester, M., Stuhlmann, H.: Viral nanoparticles as tools for intravital vascular imaging. Nat. Med. 12, 354–360 (2006)CrossRefGoogle Scholar
  96. 96.
    van Beijnum, J.R., Dings, R.P., van der Linden, E., Zwaans, B.M., Ramaekers, F.C., Mayo, K.H., Griffioen, A.W.: Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood 108, 2339–2348 (2006)CrossRefGoogle Scholar
  97. 97.
    Maeda, H., Wu, J., Sawa, T., Matsumura, Y., Hori, K.: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65, 271–284 (2000)CrossRefGoogle Scholar
  98. 98.
    Park, J.H., von Maltzahn, G., Zhang, L., Derfus, A.M., Simberg, D., Harris, T.J., Ruoslahti, E., Bhatia, S.N., Sailor, M.J.: Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small 5, 694–700 (2009)CrossRefGoogle Scholar
  99. 99.
    von Maltzahn, G., Park, J.H., Agrawal, A., Bandaru, N.K., Das, S.K., Sailor, M.J., Bhatia, S.N.: Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 69, 3892–3900 (2009)CrossRefGoogle Scholar
  100. 100.
    Prasuhn, D.E., Jr., Singh, P., Strable, E., Brown, S., Manchester, M., Finn, M.G.: Plasma clearance of bacteriophage Qbeta particles as a function of surface charge. J. Am. Chem. Soc. 130, 1328–1334 (2008)CrossRefGoogle Scholar
  101. 101.
    Molenaar, T.J., Michon, I., de Haas, S.A., van Berkel, T.J., Kuiper, J., Biessen, E.A.: Uptake and processing of modified bacteriophage M13 in mice: implications for phage display. Virology 293, 182–191 (2002)CrossRefGoogle Scholar
  102. 102.
    Srivastava, A.S., Kaido, T., Carrier, E.: Immunological factors that affect the in vivo fate of T7 phage in the mouse. J. Virol. Methods 115, 99–104 (2004)CrossRefGoogle Scholar
  103. 103.
    Vitiello, C.L., Merril, C.R., Adhya, S.: An amino acid substitution in a capsid protein enhances phage survival in mouse circulatory system more than a 1,000-fold. Virus Res. 114, 101–103 (2005)CrossRefGoogle Scholar
  104. 104.
    van Benthem, K., Tan, G., DeNoyer, L., French, R., Ruhle, M.: Local optical properties, electron densities, and London dispersion energies of atomically structured grain boundaries. Phys. Rev. Lett. 93, 227201 (2004)Google Scholar
  105. 105.
    van Benthem, K., Tan, G., French, R.H., DeNoyer, L.K., Podgornik, R., Parsegian, V.A.: Graded interface models for more accurate determination of van der Waals–London dispersion interactions across grain boundaries. Phys. Rev. B 74, 205110 (2006)Google Scholar
  106. 106.
    Jain, R.K.: Transport of molecules, particles, and cells in solid tumors. Annu. Rev. Biomed. Eng. 1, 241–263 (1999)CrossRefGoogle Scholar
  107. 107.
    Perrault, S.D., Walkey, C., Jennings, T., Fischer, H.C., Chan, W.C.: Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 9, 1909–1915 (2009)ADSCrossRefGoogle Scholar
  108. 108.
    Blanco, E., Sangai, T., Hsiao, A., Ferrati, S., Bai, L., Liu, X., Meric-Bernstam, F., Ferrari, M.: Multistage delivery of chemotherapeutic nanoparticles for breast cancer treatment. Cancer Lett. (2012). doi:10.1016/j.canlet.2012.07.027
  109. 109.
    Stylianopoulos, T., Wong, C., Bawendi, M.G., Jain, R.K., Fukumura, D.: Multistage nanoparticles for improved delivery into tumor tissue. Methods Enzymol. 508, 109–130 (2012)CrossRefGoogle Scholar
  110. 110.
    Wong, C., Stylianopoulos, T., Cui, J., Martin, J., Chauhan, V.P., Jiang, W., Popovic, Z., Jain, R.K., Bawendi, M.G., Fukumura, D.: Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. U.S.A. 108, 2426–2431 (2011)ADSCrossRefGoogle Scholar
  111. 111.
    Chauhan, V.P., Popovic, Z., Chen, O., Cui, J., Fukumura, D., Bawendi, M.G., Jain, R.K.: Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem. Int. Ed. Engl. 50, 11417–11420 (2011)CrossRefGoogle Scholar
  112. 112.
    Jain, R.K., Stylianopoulos, T.: Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010)CrossRefGoogle Scholar
  113. 113.
    Campbell, R.B., Fukumura, D., Brown, E.B., Mazzola, L.M., Izumi, Y., Jain, R.K., Torchilin, V.P., Munn, L.L.: Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res. 62, 6831–6836 (2002)Google Scholar
  114. 114.
    Dellian, M., Yuan, F., Trubetskoy, V.S., Torchilin, V.P., Jain, R.K.: Vascular permeability in a human tumour xenograft: molecular charge dependence. Br. J. Cancer 82, 1513–1518 (2000)CrossRefGoogle Scholar
  115. 115.
    Schmitt-Sody, M., Strieth, S., Krasnici, S., Sauer, B., Schulze, B., Teifel, M., Michaelis, U., Naujoks, K., Dellian, M.: Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy. Clin. Cancer Res. 9, 2335–2341 (2003)Google Scholar
  116. 116.
    Stylianopoulos, T., Diop-Frimpong, B., Munn, L.L., Jain, R.K.: Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation. Biophys. J. 99, 3119–3128 (2010)ADSCrossRefGoogle Scholar
  117. 117.
    Stylianopoulos, T., Poh, M.Z., Insin, N., Bawendi, M.G., Fukumura, D., Munn, L.L., Jain, R.K.: Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys. J. 99, 1342–1349 (2010)ADSCrossRefGoogle Scholar
  118. 118.
    Chiang, Y., Silverman, L., French, R., Cannon, R.: Thin glass film between ultrafine conductor particles in thick-film resistors. J. Am. Ceram. Soc. 77, 1143–1152 (1994)CrossRefGoogle Scholar
  119. 119.
    French, R., Mullejans, H., Jones, D., Duscher, G., Cannon, R., Ruhle, M.: Dispersion forces and Hamaker constants for intergranular films in silicon nitride from spatially resolved-valence electron energy loss spectrum imaging. Acta Mater. 46, 2271–2287 (1998)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Amy M. Wen
    • 1
  • Pooja H. Rambhia
    • 3
  • Roger H. French
    • 4
  • Nicole F. Steinmetz
    • 2
    • 4
    • 5
  1. 1.Department of Biomedical Engineering, School of EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.Department of Biomedical Engineering, School of MedicineCase Western Reserve UniversityClevelandUSA
  3. 3.Department of Biochemistry, School of MedicineCase Western Reserve UniversityClevelandUSA
  4. 4.Materials Science and Engineering, School of EngineeringCase Western Reserve UniversityClevelandUSA
  5. 5.Department of Radiology, School of MedicineCase Western Reserve UniversityClevelandUSA

Personalised recommendations