Journal of Biological Physics

, Volume 39, Issue 3, pp 387–394 | Cite as

Development of a DNA sensor using a molecular logic gate

  • D. Bhattacharjee
  • Dibyendu Dey
  • S. Chakraborty
  • Syed Arshad Hussain
  • S. Sinha
Original Paper


This communication reports the increase in fluorescence resonance energy transfer (FRET) efficiency between two laser dyes in the presence of deoxyribonucleic acid (DNA). Two types of molecular logic gates have been designed where DNA acts as input signal and fluorescence intensity of different bands are taken as output signal. Use of these logic gates as a DNA sensor has been demonstrated.


FRET DNA Molecular logic gate Sensor 


  1. 1.
    de Silva, P.A., Gunaratne, N.H.Q., Mccoy, C.P.: A molecular photoionic and gate based on fluorescent signaling. Nature 364, 42–44 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    Margulies, D., Melman, G., Shanzer, A.: A molecular full-adder and full-subtractor, an additional step toward a moleculator. J. Am. Chem. Soc. 128, 4865–4871 (2006)CrossRefGoogle Scholar
  3. 3.
    Pischel, U.: Chemical approaches to molecular logic elements for addition and subtraction. Angew. Chem. Int. Ed. 46, 4026–4040 (2007)CrossRefGoogle Scholar
  4. 4.
    Bozdemir, O.A., Sozmen, F., Büyükcakir, O., Guliyev, R., Cakmak, Y., Akkaya, E.U.: Reaction-based sensing of fluoride ions using built-in triggers for intramolecular charge transfer (ICT) and photoinduced electron transfer (PET). Org. Lett. 12, 1400–1403 (2010)CrossRefGoogle Scholar
  5. 5.
    Andreasson, J., Straight, S.D., Bandyopadhyay, S., Mitchell, R.H., Moore, T.A., Moore, A.L., Gust, D.: Molecular 2:1 digital multiplexer. Angew. Chem. Int. Ed. 46, 958–961 (2007)CrossRefGoogle Scholar
  6. 6.
    Amelia, M., Baroncini, M., Credi, A.: A simple unimolecular multiplexer/demultiplexer. Angew. Chem. Int. Ed. 47, 6240–6243 (2008)CrossRefGoogle Scholar
  7. 7.
    Perez-Inestrosa, E., Montenegro, J.M., Collado, D., Suau, R.: Molecular 1:2 demultiplexer. Chem. Commun. A 9, 1085–1087 (2008)CrossRefGoogle Scholar
  8. 8.
    Andreasson, J., Straight, S.D., Moore, T.A., Moore, A.L., Gust, D.: Molecular all-photonic encoder-decoder. J. Am. Chem. Soc. 130, 11122–11128 (2008)CrossRefGoogle Scholar
  9. 9.
    Ceroni, P., Bergamini, G., Balzani, V.: Old molecules, new concepts: [Ru(bpy)3]2+ as a molecular encoder-decoder. Angew. Chem. Int. Ed. 48, 8516–8518 (2009)CrossRefGoogle Scholar
  10. 10.
    Margulies, D., Felder, C.E., Melman, G., Shanzer, A.: A molecular keypad lock: a photochemical device capable of authorizing password entries. J. Am. Chem. Soc. 129, 347–354 (2007)CrossRefGoogle Scholar
  11. 11.
    Strack, G., Ornatska, M., Pita, M., Katz, E.: Biocomputing security system: concatenated enzyme-based logic gates operating as a biomolecular keypad lock. J. Am. Chem. Soc. 130, 4234–4235 (2008)CrossRefGoogle Scholar
  12. 12.
    Sun, W., Zhou, C., Xu, C.H., Fang, C.J., Zhang, C., Li, Z.X., Yan, C.H.: A fluorescent-switch-based computing platform in defending information risk. Chem. Eur. J. 14, 6342–6351 (2008)CrossRefGoogle Scholar
  13. 13.
    Suresh, M., Ghosh, A., Das, A.: A simple chemosensor for Hg2 +  and Cu2 +  that works as a molecular keypad lock. Chem. Commun. 3906–3908 (2008)Google Scholar
  14. 14.
    Andreasson, J. Straight, S.D., Moore, T.A., Moore, A.L., Gust, D.: An all-photonic molecular keypad lock. Chem. Eur. J. 15, 3936–3939 (2009)CrossRefGoogle Scholar
  15. 15.
    Bozdemir, O.A., Guliyev, R., Büyükcakir, O., Selcuk, S., Kolemen, S., Gulseren, G., Nalbantoglu, T., Boyaci, H., Akkaya, E.U.: Selective manipulation of ICT and PET processes in styryl-bodipy derivatives: applications in molecular logic and fluorescence sensing of metal ions. J. Am. Chem. Soc. 132, 8029–8036 (2010)CrossRefGoogle Scholar
  16. 16.
    Hayes, J.P.: Introduction to Digital Logic Design. Addison-Wesley Publishing Company, Reading (1993)Google Scholar
  17. 17.
    de Silva, P.A., Uchiyama, S.N.: Molecular logic and computing. Nanotechnology 2, 399–410 (2007)Google Scholar
  18. 18.
    Szacizowski, K.: Digital information processing in molecular systems. Chem. Rev. 108, 3481–3548 (2008)CrossRefGoogle Scholar
  19. 19.
    Andreasson, J., Pischel, U.: Smart molecules at work—mimicking advanced logic operations. Rev. Chem. Soc. 39, 174–188 (2010)CrossRefGoogle Scholar
  20. 20.
    Liu, H., Zhou, Y., Yang, Y., Wang, W., Qu, L., Chen, C., Liu, D., Zhang, D., Zhu, D.: Photo-pH dually modulated fluorescence switch based on DNA spatial nanodevice. J. Phys. Chem. B 112, 6893 (2008)CrossRefGoogle Scholar
  21. 21.
    Margulies, D., Hamilton, A.D.: Digital analysis of protein properties by an ensemble of DNA quadruplexes. J. Am. Chem. Soc. 131, 9142 (2009)CrossRefGoogle Scholar
  22. 22.
    Strack, G., Ornatska, M., Pita, M., Katz, E.: Biocomputing security system: concatenated enzyme-based logic gates operating as a biomolecular keypad lock. J. Am. Chem. Soc. 130, 4234–4235 (2008)CrossRefGoogle Scholar
  23. 23.
    Pais, V.F., Remón, P., Collado, D., Andréasson, J., Inestrosa, E.P., Pischel, U.: OFF-ON-OFF fluorescence switch with T-Latch function. Org. Lett. 13, 5572–5575 (2011)CrossRefGoogle Scholar
  24. 24.
    Kumar, M., Kumar, R., Bhalla, V.: Optical chemosensor for Ag+, Fe3+, and cysteine: information processing at molecular level. Org. Lett. 13, 366–369 (2011)MATHCrossRefGoogle Scholar
  25. 25.
    Wang, J., Katz, E.: Digital biosensors with built-in logic for biomedical applications—biosensors based on a biocomputing concept. Anal. Bioanal. Chem. 398, 1591–1603 (2010)CrossRefGoogle Scholar
  26. 26.
    Fujimoto, K., Shimizu, H., Inouye, M.: Unambiguous detection of target DNAs by excimer-monomer switching molecular beacons. J. Org. Chem. 69, 3271–3275 (2004)CrossRefGoogle Scholar
  27. 27.
    Clelland, C.T. , Risca, V., Bancroft, C.: Hiding messages in DNA microdots. Nature 399, 533–534 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using self assembly of DNA triple cross-over molecules. Nature 407, 493–496 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    Tanaka, K., Okamoto, A., Saito, I.: Public-key system using DNA as a one-way function for key distribution. Biosystems 81, 25–29 (2005)CrossRefGoogle Scholar
  30. 30.
    Seth, D., Chakrabarty, D., Chakraborty, A., Sarkar, N.S.: Study of energy transfer from 7-amino coumarin donors to rhodamine 6G acceptor in non-aqueous reverse micelles. Chem. Phys. Lett. 401, 546–552 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Förster, T.H.: Experimentelle und theoretische Untersuchung des Zwischenmolekularen übergangs von Elektrinenanregungsenergie. Z. Naturforsch. 4A, 321–327 (1949)ADSGoogle Scholar
  32. 32.
    Hussain, S.A., Chakraborty, S., Bhattacharjee, D., Schoonheydt, R.A.: Fluorescence resonance energy transfer between organic dyes adsorbed onto nano-clay and Langmuir–Blodgett (LB) films. Spectrochim. Acta, Part A 75, 664–670 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Förster, T.H.: Modern Quantum Chemistry, Istanbul Lectures, Part III: Action of Light and Organic Crystals. Academic Press, New York (1965)Google Scholar
  34. 34.
    Malicka, J., Gryczynski, I., Lakowicz, J.R.: DNA hybridization assays using metal-enhanced fluorescence. Biochem. Biophys. Res. Commun. 306, 213–218 (2003)CrossRefGoogle Scholar
  35. 35.
    Mathur, N., Aneja, A., Bhatnagar, P.K., Mathur, P.C.: A new FRET-based sensitive DNA sensor for medical diagnostics using PNA probe and water-soluble blue light emitting polymer. J. Sens. 2008, 1–6 (2008)CrossRefGoogle Scholar
  36. 36.
    Watson, J.D., Crick, F.H.C.: A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953)ADSCrossRefGoogle Scholar
  37. 37.
    Wang, S., Gaylord, B.S., Bazan, G.C.: Fluorescein provides a resonance gate for FRET from conjugated polymers to DNA intercalated dyes. J. Am. Chem. Soc. 126, 5446–5451 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • D. Bhattacharjee
    • 1
  • Dibyendu Dey
    • 1
  • S. Chakraborty
    • 1
  • Syed Arshad Hussain
    • 1
  • S. Sinha
    • 2
  1. 1.Thin Film and Nanoscience Laboratory, Department of PhysicsTripura UniversityTripuraIndia
  2. 2.Department of BotanyTripura UniversityTripuraIndia

Personalised recommendations