Journal of Biological Physics

, Volume 39, Issue 1, pp 1–14 | Cite as

Anomalies in the motion dynamics of long-flagella mutants of Chlamydomonas reinhardtii

  • Dolly K. Khona
  • Venkatramanan G. Rao
  • Mustafa J. Motiwalla
  • P. C. Sreekrishna Varma
  • Anisha R. Kashyap
  • Koyel Das
  • Seema M. Shirolikar
  • Lalit Borde
  • Jayashree A. Dharmadhikari
  • Aditya K. Dharmadhikari
  • Siuli Mukhopadhyay
  • Deepak Mathur
  • Jacinta S. D’SouzaEmail author
Original Paper


Chlamydomonas reinhardtii has long been used as a model organism in studies of cell motility and flagellar dynamics. The motility of the well-conserved ‘9+2’ axoneme in its flagella remains a subject of immense curiosity. Using high-speed videography and morphological analyses, we have characterized long-flagella mutants (lf1, lf2-1, lf2-5, lf3-2, and lf4) of C. reinhardtii for biophysical parameters such as swimming velocities, waveforms, beat frequencies, and swimming trajectories. These mutants are aberrant in proteins involved in the regulation of flagellar length and bring about a phenotypic increase in this length. Our results reveal that the flagellar beat frequency and swimming velocity are negatively correlated with the length of the flagella. When compared to the wild-type, any increase in the flagellar length reduces both the swimming velocities (by 26–57%) and beat frequencies (by 8–16%). We demonstrate that with no apparent aberrations/ultrastructural deformities in the mutant axonemes, it is this increased length that has a critical role to play in the motion dynamics of C. reinhardtii cells, and, provided there are no significant changes in their flagellar proteome, any increase in this length compromises the swimming velocity either by reduction of the beat frequency or by an alteration in the waveform of the flagella.


Chlamydomonas reinhardtii Flagella Motion dynamics Swimming velocity Beat frequency Waveforms Long-flagella mutants Motility Dynein arms 



The Inter-Academy Summer Students program supported Anisha R. Kashyap. We thank P. A. Lefebvre for kindly donating the lf4 mutant cells and Krishanu Ray for permitting use of the TEM facility at the Tata Institute of Fundamental Research. We also acknowledge valuable input provided by David Mitchell (Upstate Medical University, USA) for standardizing the conditions for the TEM of axonemes.

Supplementary material

(AVI 2.77 MB)

(AVI 8.57 MB)


  1. 1.
    Vincensini, L., Blisnick, T., Bastin, P.: 1001 model organisms to study cilia and flagella. Biol. Cell 103, 109–130 (2011)CrossRefGoogle Scholar
  2. 2.
    Summers, K.E., Gibbons, I.R.: IR Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc. Natl. Acad. Sci. USA 68, 3092–3096 (1971)ADSCrossRefGoogle Scholar
  3. 3.
    Brokaw, C.J.: Flagellar movement: a sliding filament model. Science 178, 455–462 (1972)ADSCrossRefGoogle Scholar
  4. 4.
    Brokaw, C.J.: Computer simulation of flagellar movement I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. Biophys. J. 12, 564–586 (1972)CrossRefGoogle Scholar
  5. 5.
    Brokaw, C.J.: Bend propagation by a sliding filament model for flagella. J. Exp. Biol. 55, 289–304 (1971)Google Scholar
  6. 6.
    Shingyoji, C., Higuchi, H., Yoshimura, M., Katayama, E., Yanagida T.: Dynein arms are oscillating force generators. Nature 393, 711–714 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Hilfinger, A., Chattopadhyay, A.K., Jülicher, F.: Nonlinear dynamics of cilia and flagella. Phys. Rev. E 79, 051918 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Lindemann, C.B.: Testing the geometric clutch hypothesis. Biol. Cell 96, 681–690 (2004)CrossRefGoogle Scholar
  9. 9.
    Polin, M., Tuval, I., Drescher, K., Gollub, J.P., Goldstein, R.E.: Chlamydomonas swims with two “gears” in a eukaryotic version of run-and-tumble locomotion. Science 325, 487–490 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Brokaw, C.J.: Introduction: generation of the bending cycle in cilia and flagella. Prog. Clin. Biol. Res. 80, 137–141 (1982)Google Scholar
  11. 11.
    Hoops, H.J., Witman, G.B.: Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella. J. Cell Biol. 97, 902–908 (1983)CrossRefGoogle Scholar
  12. 12.
    Hosokawa, Y., Miki-Noumura, T.: Bending motion of Chlamydomonas axonemes after extrusion of central-pair microtubules. J Cell Biol. 105, 1297–1301 (1987)CrossRefGoogle Scholar
  13. 13.
    Mitchell, D.R., Rosenbaum, J.L.: A motile Chlamydomonas flagellar mutant that lacks outer dynein arms. J. Cell Biol. 100, 1228–1234 (1985)CrossRefGoogle Scholar
  14. 14.
    Brokaw, C.J., Kamiya, R.: Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil. Cytoskelet. 8, 68–75 (1987)CrossRefGoogle Scholar
  15. 15.
    Sakakibara, H., Mitchell, D.R., Kamiya, R.: A Chlamydomonas outer arm dynein mutant missing the alpha heavy chain. J. Cell Biol. 113, 615–622 (1991)CrossRefGoogle Scholar
  16. 16.
    Bayly, P.V., Lewis, B.L., Kemp, P.S., Pless, R.B., Dutcher, S.K.: Efficient spatiotemporal analysis of the flagellar waveform of Chlamydomonas reinhardtii. Cytoskeleton 67, 56–69 (2010)Google Scholar
  17. 17.
    Wright, R.L., Chojnacki, B., Jarvik, J.W.: Abnormal basal-body number, location, and orientation in a striated fiber-defective mutant of Chlamydomonas reinhardtii. J. Cell Biol. 96, 1697–1707 (1983)CrossRefGoogle Scholar
  18. 18.
    Goodenough, U.W., St. Clair, H.S.: BALD-2: a mutation affecting the formation of doublet and triplet sets of microtubules in Chlamydomonas reinhardtii. J. Cell Biol. 66, 480–491 (1975)CrossRefGoogle Scholar
  19. 19.
    Kumi-Matsuura, I., Lefebvre, P. A. , Kamiya, R., Hirono, M.: Bld10p, a novel protein essential for basal body assembly in Chlamydomonas: localization to the cartwheel, the first ninefold symmetrical structure appearing during assembly. J. Cell Biol. 165, 663–671 (2004)CrossRefGoogle Scholar
  20. 20.
    Piasecki, B.P., LaVoie, M., Tam, L.W., Lefebvre, P.A., Silflow, C.D.: The Uni2 phosphoprotein is a cell cycle-regulated component of the basal body maturation pathway in Chlamydomonas reinhardtii. Mol. Biol. Cell 19, 262–273 (2008)CrossRefGoogle Scholar
  21. 21.
    D’Souza J.S., Gudipati, M., Dharmadhikari, J.A., Dharmadhikari, A.K., Kashyap, A., Sivaramakrishnan, M., Rao, U., Mathur, D., Rao, B.J.: Flagella-generated forces reveal gear-type motor in single cells of the green alga, Chlamydomonas reinhardtii. Biochem. Biophys. Res. Commun. 380, 266–270 (2009)CrossRefGoogle Scholar
  22. 22.
    McVittie, A.: Flagellum mutants of Chlamydomonas reinhardtii. J. Gen. Microbiol. 71, 525–540 (1972)CrossRefGoogle Scholar
  23. 23.
    Barsel, S.-E., Wexler, D.E., Lefebvre, P.A.: Genetic analysis of long flagella mutants of Chlamydomonas reinhardtii. Genetics 118, 637–648 (1988)Google Scholar
  24. 24.
    Asleson, C.M., Lefebvre, P.A.: Genetic analysis of flagellar length control in Chlamydomonas reinhardtii: a new long-flagella locus and extragenic suppressor mutations. Genetics 148, 693–702 (1998)Google Scholar
  25. 25.
    Berman, S.A., Wilson, N.F., Haas, N.A., Lefebvre, P.A.: A novel MAP kinase regulates flagellar length in Chlamydomonas. Curr. Biol. 13, 1145–1149 (2003)CrossRefGoogle Scholar
  26. 26.
    Tam, L.-W., Dentler, W.L., Lefebvre, P.A.: Defective flagellar assembly and length regulation in LF3 null mutants in Chlamydomonas. J. Cell Biol. 163, 597–607 (2003)CrossRefGoogle Scholar
  27. 27.
    Nguyen, R.L., Tam, L.W., Lefebvre, P.A.: The LF1 gene of Chlamydomonas reinhardtii encodes a novel protein required for flagellar length control. Genetics 169, 1415–1424 (2005)CrossRefGoogle Scholar
  28. 28.
    Lefebvre, P.A., Barsel, S., Stuckey, M., Swartz, L., Wexler, D.: Genetic analysis of flagellar gene expression in Chlamydomonas. In: De Brabander, M., De May, J. (eds.) Microtubules and Microtubule Inhibitors, pp. 13–19. Elsevier, Amsterdam (1985)Google Scholar
  29. 29.
    Harris, E.H.: The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use. Academic Press, San Diego (1989)Google Scholar
  30. 30.
    Kato-Minoura, T., Hirono, M., Kamiya, R.: Chlamydomonas inner-arm dynein mutant, ida5, has a mutation in an actin-encoding gene. J. Cell Biol. 137, 649–656 (1997)CrossRefGoogle Scholar
  31. 31.
    Frey, E., Brokaw, C.J., Omoto, C.K.: Reactivation at low ATP distinguishes among classes of paralyzed flagella mutants. Cell Motil. Cytoskelet. 38, 91–99 (1997)CrossRefGoogle Scholar
  32. 32.
    Yagi, T., Minoura, I., Fujiwara, A., Saito, R., Yasunaga, T., Hirono, M., Kamiya R.: An axonemal dynein particularly important for flagellar movement at high viscosity. Implications from a new Chlamydomonas mutant deficient in the dynein heavy chain gene DHC9. J. Biol. Chem. 280, 41412–41420 (2005)CrossRefGoogle Scholar
  33. 33.
    Yamamoto, R., Hirono, M., Kamiya R.: Discrete PIH proteins function in the cytoplasmic preassembly of different subsets of axonemal dyneins. J. Cell Biol. 190, 65–71 (2010)CrossRefGoogle Scholar
  34. 34.
    Wei, M., Sivadas, P., Owen, H.A., Mitchell, D.R., Yang, P.: Chlamydomonas mutants display reversible deficiencies in flagellar beating and axonemal assembly. Cytoskeleton 67, 71–80 (2010)CrossRefGoogle Scholar
  35. 35.
    Gudipati, M., D’Souza, J.S., Dharmadhikari, J.A., Dharmadhikari, A.K., Rao, B.J., Mathur D.: An optically-controllable, micron-sized motor based on live cells. Opt. Express 13, 1555–1560 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Moharikar, S., D’Souza, J.S., Kulkarni, A.B., Rao B.J.: Apoptotic-like cell death pathway is induced in unicellular chlorophyte Chlamydomonas reinhardtii (Chlorophyceae) cells following UV irradiation: detection and functional analyses. J. Phycol. 42, 423–433 (2006)CrossRefGoogle Scholar
  37. 37.
    Witman, G.B.: Isolation of Chlamydomonas flagella and flagellar axonemes. Methods Enzymol. 134, 280–290 (1986)CrossRefGoogle Scholar
  38. 38.
    Nakano, I., Kobayashi, T., Yoshimura, M., Shingyoji, C.: Central-pair-linked regulation of microtubule sliding by calcium in flagellar axonemes. J. Cell Sci. 116, 1627–1636 (2003)CrossRefGoogle Scholar
  39. 39.
    Wargo, M.J., Smith, E.F.: Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella. Proc. Natl. Acad. Sci. USA 100, 137–142 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    Wargo, M.J., McPeek, M.A. Smith, E.F.: Analysis of microtubule sliding patterns in Chlamydomonas flagellar axonemes reveals dynein activity on specific doublet microtubules. J. Cell Sci. 117, 2533–2544 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Dolly K. Khona
    • 1
  • Venkatramanan G. Rao
    • 1
  • Mustafa J. Motiwalla
    • 1
  • P. C. Sreekrishna Varma
    • 1
  • Anisha R. Kashyap
    • 2
  • Koyel Das
    • 3
  • Seema M. Shirolikar
    • 5
  • Lalit Borde
    • 5
  • Jayashree A. Dharmadhikari
    • 4
  • Aditya K. Dharmadhikari
    • 4
  • Siuli Mukhopadhyay
    • 3
  • Deepak Mathur
    • 4
  • Jacinta S. D’Souza
    • 1
    Email author
  1. 1.UM-DAE-Centre for Excellence in Basic SciencesBiological SciencesMumbaiIndia
  2. 2.K. J. Somaiya College of Commerce and ScienceMumbaiIndia
  3. 3.Department of MathematicsIndian Institute of Technology BombayMumbaiIndia
  4. 4.Tata Institute of Fundamental ResearchMumbaiIndia
  5. 5.Department of Biological SciencesTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations