Advertisement

Journal of Biological Physics

, Volume 38, Issue 4, pp 657–671 | Cite as

How simple can a model of an empty viral capsid be? Charge distributions in viral capsids

  • Anže Lošdorfer BožičEmail author
  • Antonio Šiber
  • Rudolf Podgornik
Original Paper

Abstract

We investigate and quantify salient features of the charge distributions on viral capsids. Our analysis combines the experimentally determined capsid geometry with simple models for ionization of amino acids, thus yielding a detailed description of spatial distribution for positive and negative charges across the capsid wall. The obtained data is processed in order to extract the mean radii of distributions, surface charge densities, as well as dipole moment densities. The results are evaluated and examined in light of previously proposed models of capsid charge distributions, which are shown to have to some extent limited value when applied to real viruses.

Keywords

Capsid Virus Electrostatics Geometry Icosahedron Dipole moment 

Notes

Acknowledgements

One of us (A.L.B.) thanks A. Ljubetič for introducing him to the Tcl scripting language in VMD.

A.L.B. acknowledges support from the Slovene Agency for Research and Development under a young researcher grant. A.Š. acknowledges support from the Ministry of Science, Education, and Sports of the Republic of Croatia (Grant No. 035-0352828-2837). R.P. acknowledges support from the Slovene Agency for Research and Development through research program P1-0055 and research project J1-4297.

References

  1. 1.
    Bernal, J., Fankuchen, I.: X-ray and crystallographic studies of plant virus preparations. J. Gen. Physiol. 25, 111–165 (1941)CrossRefGoogle Scholar
  2. 2.
    Iwasaki, K., Omura, T.: Electron tomography of the supramolecular structure of virus-infected cells. Curr. Opin. Struct. Biol. 20, 632–639 (2010)CrossRefGoogle Scholar
  3. 3.
    Šiber, A., Lošdorfer Božič, A., Podgornik, R.: Energies and pressures in viruses: contribution of nonspecific electrostatic interactions. Phys. Chem. Chem. Phys. 14, 3746–3765 (2012)Google Scholar
  4. 4.
    Belyi, V.A., Muthukumar, M.: Electrostatic origin of genome packing in viruses. Proc. Natl. Acad. Sci. USA 103, 17174–17178 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Kegel, W.K., van der Schoot, P.: Competing hydrophobic and screened-Coulomb interactions in hepatitis B virus capsid assembly. Biophys. J. 86, 3905–3913 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Kegel, W.K., van der Schoot, P.: Physical regulation of the self-assembly of tobacco mosaic virus coat protein. Biophys. J. 91, 1501–1512 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Lošdorfer Božič, A., Šiber, A., Podgornik, R.: Electrostatic self-energy of a partially formed spherical shell in salt solution: application to stability of tethered and fluid shells as models for viruses and vesicles. Phys. Rev. E 83, 041916 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Marzec, C.J., Day, L.A.: Pattern formation in icosahedral virus capsids: the papovaviruses and Nudaurelia capensis β virus. Biophys. J. 65, 2559–2577 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    Prinsen, P., van der Schoot, P., Gelbart, W.M., Knobler, C.M.: Multishell structures of virus coat proteins. J. Phys. Chem. B 114, 5522–5533 (2010)CrossRefGoogle Scholar
  10. 10.
    Ting, C.L., Wu, J., Wang, Z.G.: Thermodynamic basis for the genome to capsid charge relationship in electrostatically-driven viral encapsidation. Proc. Natl. Acad. Sci. USA 108, 16986–16991 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Šiber, A., Podgornik, R.: Role of electrostatic interactions in the assembly of empty spherical viral capsids. Phys. Rev. E 76, 061906 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Zandi, R., van der Schoot, P., Reguera, D., Kegel, W., Reiss, H.: Classical nucleation theory of virus capsids. Biophys. J. 90, 1939–1948 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Karlin, S., Brendel, V.: Charge configurations in viral proteins. Proc. Natl. Acad. Sci. USA 85, 9396–9400 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    Michen, B., Graule, T.: Isoelectric points in viruses. J. Appl. Microbiol. 109, 388–397 (2010)Google Scholar
  15. 15.
    Steinmetz, N., Manchester, M.: Viral Nanoparticles—Tools for Materials Science and Biomedicine. Pan Stanford Publishing (2011)Google Scholar
  16. 16.
    Šiber, A., Zandi, R., Podgornik, R.: Thermodynamics of nanospheres encapsulated in virus capsids. Phys. Rev. E 81, 051919 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Pichierri, F.: Quantum Proteomics. arXiv:1107.5853v1 [q-bio.BM] (2011)
  18. 18.
    Finkelstein, A.V., Ptitsyn, O.B.: Protein Physics: A Course of Lectures. Academic Press (2002)Google Scholar
  19. 19.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)zbMATHGoogle Scholar
  20. 20.
    Carrillo-Tripp, M., Shepherd, C.M., Borelli, I.A., Venkataraman, S., Lander, G., Natarajan, P., Johnson, J.E., Brooks, III, C.L., Reddy, V.S.: VIPERdb2: an enhanced and web API enabled relational database for structural virology. Nucleic Acids Res. 37, D436–D442 (2009)CrossRefGoogle Scholar
  21. 21.
    Chen, V.B., Arendall III, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., Richardson, D.C.: MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D66, 12–21 (2010)Google Scholar
  22. 22.
    Humphrey, W., Dalke, A., Schulten, K.: VMD – Visual Molecular Dynamics. J. Mol. Graphics 14, 33–38 (1996)CrossRefGoogle Scholar
  23. 23.
    Betts, M.J., Russell, R.B.: Amino acid properties and consequences of substitutions. In: Barnes, M.R., Gray, I.C. (eds.) Bioinformatics for Geneticists (2003)Google Scholar
  24. 24.
    The UniProt Consortium: Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res. 39, D214–D219 (2011)CrossRefGoogle Scholar
  25. 25.
    Roos, W.H., Bruinsma, R., Wuite, G.J.L.: Physical virology. Nat. Phys. 6, 733–743 (2010)CrossRefGoogle Scholar
  26. 26.
    Baker, T.S., Olson, N.H., Fuller, S.D.: Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol. Mol. Biol. Rev. 63, 862–922 (1999)Google Scholar
  27. 27.
    Mannige, R.V., Brooks III, C.L.: Periodic table of virus capsids: implications for natural selection and design. PLoS ONE 5, e9423 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Speir, J.A., Johnson, J.E.: Virus particle structure: nonenveloped viruses. In: Mahy, B.W.J., Regenmortel, M.H.V.V. (eds.) Encyclopedia of Virology, vol. 5, pp. 380–393, Oxford (2008)Google Scholar
  29. 29.
    Zandi, R., Reguera, D., Bruinsma, R.F., Gelbart, W.M., Rudnick, J.: Origin of icosahedral symmetry in viruses. Proc. Natl. Acad. Sci. USA 101, 15556–15560 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Šiber, A., Podgornik, R.: Stability of elastic icosadeltahedral shells under uniform external pressure: application to viruses under osmotic pressure. Phys. Rev. E 79, 011919 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Gunner, M.R., Mao, J., Song, Y., Kim, J.: Factors influencing the energetics of electron and proton transfers in proteins. Biochim. Biophys. Acta 1757, 942–968 (2006)CrossRefGoogle Scholar
  32. 32.
    Isom, D.G., Cannon, B.R., Castañeda, C.A., Robinson, A., Garcia-Moreno E., B.: High tolerance for ionizable residues in the hydrophobic interior of proteins. Proc. Natl. Acad. Sci. USA 105, 17784–17788 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Isom, D.G., Castañeda, C.A., Cannon, B.R., Velu, P.D., Garcia-Moreno E., B.: Charges in the hydrophobic interior of proteins. Proc. Natl. Acad. Sci. USA 107, 16096–16100 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Hu, T., Zhang, R., Shklovskii, B.I.: Electrostatic theory of viral self-assembly. Physica A 387, 3059–3064 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Šiber, A., Podgornik, R.: Nonspecific interactions in spontaneous assembly of empty versus functional single-stranded RNA viruses. Phys. Rev. E 78, 051915 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Petsko, G.A., Ringe, D.: Protein Structure and Function. New Science Press (2004)Google Scholar
  37. 37.
    Parsegian, V.A., Zemb, T.: Hydration forces: observations, explanations, expectations, questions. Curr. Opin. Colloid Interface Sci. 16, 618–624 (2011)CrossRefGoogle Scholar
  38. 38.
    Langlet, J., Gaboriaud, F., Gantzer, C., Duval, J.F.L.: Impact of chemical and structural anisotropy on the electrophoretic mobility of spherical soft multilayer particles: the case of bacteriophage MS2. Biophys. J. 94, 3293–3312 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Pfeiffer, P., Herzog, M., Hirth, L.: RNA viruses: stabilization of brome mosaic virus. Phil. Trans. R. Soc. Lond. B. 276, 99–107 (1976)ADSCrossRefGoogle Scholar
  40. 40.
    Felder, C.E., Prilusky, J., Silman, I., Sussman, J.L.: A server and database for dipole moments of proteins. Nucleic Acids Res. 35, W512–W521 (2007)CrossRefGoogle Scholar
  41. 41.
    Ni, P., Wang, Z., Ma, X., Das, N.C., Sokol, P., Chiu, W., Dragnea, B., Hagan, M., Kao, C.C.: An examination of the electrostatic interactions between the N-terminal tail of the brome mosaic virus coat protein and encapsidated RNAs. J. Mol. Biol. 419, 284–300 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Anže Lošdorfer Božič
    • 1
    Email author
  • Antonio Šiber
    • 2
  • Rudolf Podgornik
    • 1
    • 3
  1. 1.Department of Theoretical PhysicsJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Institute of PhysicsZagrebCroatia
  3. 3.Department of Physics, Faculty of Mathematics and PhysicsLjubljanaSlovenia

Personalised recommendations