Journal of Biological Physics

, Volume 38, Issue 4, pp 573–588 | Cite as

Influence of spatial structure on effective nutrient diffusion in bacterial biofilms

  • Thomas Guélon
  • Jean-Denis Mathias
  • Guillaume Deffuant
Original Paper


The main contribution of this paper is to use homogenization techniques to compute diffusion coefficients from experimental images of microbial biofilms. Our approach requires the analysis of several experimental spatial structures of biofilms in order to derive from them a Representative Volume Element (RVE). Then, we apply a suitable numerical procedure to the RVE to derive the diffusion coefficients. We show that diffusion coefficients significantly vary with the biofilm structure. These results suggest that microbial biofilm structures can favour nutrient access in some cases.


Homogenization technique Diffusion process Nutrient access Bacterial biofilms 



This work was supported in part by the project ANR DISCO (ANR DISCO 09-SYSC-003, SYSCOMM call). The first author’s work is carried out at the French Regional Council of Auvergne. This publication only reflects the authors’ view.


  1. 1.
    Costerton, J., Lewandowski, Z., Caldwell, D., Korber, D., Lappin-Scott, H.: Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995)CrossRefGoogle Scholar
  2. 2.
    Daims, H., Nielsen, P., Nielsen, J., Juretschko, S., Wagner, M.: Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants: diversity and in situ physiology. Water Sci. Technol. 41(4–5), 85–90 (2000)Google Scholar
  3. 3.
    Beech, I., Sunner, J.: Biocorrosion: towards understanding interactions between biofilms and metals. Curr. Opin. Biotechnol. 15(3), 181–186 (2004)CrossRefGoogle Scholar
  4. 4.
    Tijhuis, L., Van Loosdrecht, M., Heijnen, J.: Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors. Biotechnol. Bioeng. 44(5), 595–608 (1994)CrossRefGoogle Scholar
  5. 5.
    Wanner, O., Reichert, P.: Mathematical modeling of mixed-culture biofilms. Biotechnol. Bioeng. 49(2), 172–184 (1996)CrossRefGoogle Scholar
  6. 6.
    Donlan, R., Costerton, J.: Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15(2), 167–193 (2002)CrossRefGoogle Scholar
  7. 7.
    Stewart, P., Costerton, J.: Antibiotic resistance of bacteria in biofilms. Lancet 358(9276), 135–138 (2001)CrossRefGoogle Scholar
  8. 8.
    De Beer, D., Stoodley, P., Roe, F., Lewandowski, Z.: Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol. Bioeng. 43(11), 1131–1138 (1994)CrossRefGoogle Scholar
  9. 9.
    De Beer, D., Stoodley, P., Lewandowski, Z.: Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnol. Bioeng. 53(2), 151–158 (1997)CrossRefGoogle Scholar
  10. 10.
    Libicki, S.B., Salmon, P.M., Robertson, C.R.: Effective diffusive permeability of a nonreacting solute in microbial cell aggregates. Biotechnol. Bioeng. 32(1), 68–85 (1988)CrossRefGoogle Scholar
  11. 11.
    Beyenal, H., Tanyolac, A.: The calculation of simultaneous effective diffusion coefficients of the substrates in a fluidized bed biofilm reactor. Water Sci. Technol. 29(10–11), 463–470 (1994)Google Scholar
  12. 12.
    Bakken, L., Olsen, R.: Buoyant densities and dry-matter contents of microorganisms: conversion of a measured biovolume into biomass. Appl. Environ. Microbiol. 45(4), 1188–1195 (1983)Google Scholar
  13. 13.
    Bratbak, G., Dundas, I.: Bacterial dry matter content and biomass estimations. Appl. Environ. Microbiol. 48(4), 755–757 (1984)Google Scholar
  14. 14.
    Matson, J., Characklis, W.: Diffusion into microbial aggregates. Water Res. 10(10), 877–885 (1976)CrossRefGoogle Scholar
  15. 15.
    La Cour Jansen, J., Harremoes, P.: Removal of soluble substrates in fixed films. Water Sci. Technol. 17(2–3), 1–14 (1985)Google Scholar
  16. 16.
    Dibdin, G.: Diffusion of sugars and carboxylic acids through human dental plaque in vitro. Arch. Oral Biol. 26(6), 515–523 (1981)CrossRefGoogle Scholar
  17. 17.
    Stewart, P.: A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotechnol. Bioeng. 59(3), 261–272 (1998)CrossRefGoogle Scholar
  18. 18.
    Lamotta, E.: Internal diffusion and reaction in biological films. Environ. Sci. Technol. 10(8), 765–769 (1976)CrossRefGoogle Scholar
  19. 19.
    Ochoa, J., Stroeve, P., Whitaker, S.: Diffusion and reaction in cellular media. Chem. Eng. Sci. 41(12), 2999–3013 (1986)CrossRefGoogle Scholar
  20. 20.
    Ochoa-Tapia, J., Stroeve, P., Whitaker, S.: Diffusive transport in two-phase media: spatially periodic models and Maxwell’s theory for isotropic and anisotropic systems. Chem. Eng. Sci. 49(5), 709–726 (1994)CrossRefGoogle Scholar
  21. 21.
    Wood, B., Quintard, M., Whitaker, S.: Methods for predicting diffusion coefficients in biofilms and cellular systems. Methods Enzymol. 337, 319–338 (2001)Google Scholar
  22. 22.
    Wood, B., Quintard, M., Whitaker, S.: Calculation of effective diffusivities for biofilms and tissues. Biotechnol. Bioeng. 77(5), 495–516 (2002)CrossRefGoogle Scholar
  23. 23.
    Gujer, W., Wanner, O.: Modeling mixed population biofilms. In: Characklis, W.G., Marshall, K.C. (eds.) Biofilms. Wiley, New York (1990)Google Scholar
  24. 24.
    Fan, L.-S., Leyva-Ramos, R., Wisecarver, K., Zehner, B.: Diffusion of phenol through a biofilm grown on activated carbon particles in draft-tube three-phase fluidized-bed bioreactor. Biotechnol. Bioeng. 35(3), 279–286 (1990)CrossRefGoogle Scholar
  25. 25.
    Jefferson, K.: What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 236(2), 163–173 (2004)Google Scholar
  26. 26.
    Roszak, D., Colwell, R.: Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51(3), 365–379 (1987)Google Scholar
  27. 27.
    Pamp, S., Tolker-Nielsen, T.: Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J. Bacteriol. 189(6), 2531–2539 (2007)CrossRefGoogle Scholar
  28. 28.
    Thar, R., Kuhl, M.: Complex pattern formation of marine gradient bacteria explained by a simple computer model. FEMS Microbiol. Lett. 246(1), 75–79 (2005)CrossRefGoogle Scholar
  29. 29.
    Allesen-Holm, M., Barken, K., Yang, L., Klausen, M., Webb, J., Kjelleberg, S., Molin, S., Givskov, M., Tolker-Nielsen, T.: A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol. 59(4), 1114–1128 (2006)CrossRefGoogle Scholar
  30. 30.
    Rieu, A., Briandet, R., Habimana, O., Garmyn, D., Guzzo, J., Piveteau, P.: Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains. Appl. Environ. Microbiol. 74(14), 4491–4497 (2008)CrossRefGoogle Scholar
  31. 31.
    Xavier, J., Martinez-Garcia, E., Foster, K.: Social evolution of spatial patterns in bacterial biofilms: when conflict drives disorder. Am. Nat. 174(1), 1–12 (2009)CrossRefGoogle Scholar
  32. 32.
    Hunter, R., Beveridge, T.: High-resolution visualization of Pseudomonas aeruginosa pao1 biofilms by freeze-substitution transmission electron microscopy. J. Bacteriol. 187(22), 7619–7630 (2005)CrossRefGoogle Scholar
  33. 33.
    Dockery, J., Klapper, I.: Finger formation in biofilm layers. SIAM J. Appl. Math. 62(3), 853–869 (2002)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Aboudi, J.: Mechanics of composite materials - A Unified Micromechanical Approach. Elsevier, Amsterdam (1991)zbMATHGoogle Scholar
  35. 35.
    Dormieux, L., Molinari, A., Kondo, D.: Micromechanical approach to the behaviour of poroelastic materials. J. Mech. Phys. Solids. 50(10), 2203–2231 (2002)zbMATHCrossRefADSGoogle Scholar
  36. 36.
    Fritsch, A., Dormieux, L., Hellmich, C., Sanahuja, J.: Mechanical behaviour of hydroxyapatite biomaterials: an experimentally validated micromechanical model for elasticity and strength. J. Biomed. Mater. Res. A 88(1), 149–161 (2009)Google Scholar
  37. 37.
    Mathias, J.-D., Tessier-Doyen, N.: Homogenization of glass/alumina two-phase materials using a cohesive zone model. Comput. Mater. Sci. 43(4), 1081–1085 (2008)CrossRefGoogle Scholar
  38. 38.
    Wood, B., Whitaker, S.: Diffusion and reaction in biofilms. Chem. Eng. Sci. 53(3), 397–425 (1998)CrossRefGoogle Scholar
  39. 39.
    Wood, B.D., Golfier, F., Quintard, M.: Dispersive transport in porous media with biofilms: local mass equilibrium in simple unit cells. IJEWM J. 7(1–2), 24–48 (2011)CrossRefGoogle Scholar
  40. 40.
    Maxwell, J.C.: Treatise on Electricity and Magnetism, vol. I, 2nd edn., p. 400. Clarendon Press, Oxford (1881)Google Scholar
  41. 41.
    Chang, H.-C.: Effective diffusion and conduction in two-phase media: a unified approach. AICHE J. 29(5), 846–853 (1983)CrossRefGoogle Scholar
  42. 42.
    Beyenal, H., Şeker, Ş., Tanyolaç, A., Salih, B.: Diffusion coefficients of phenol and oxygen in a biofilm of Pseudomonas putida. AICHE J. 43(1), 243–250 (1997)CrossRefGoogle Scholar
  43. 43.
    Fu, Y.-C., Zhang, T.C., Bishop, P.L.: Determination of effective oxygen diffusivity in biofilms grown in a completely mixed biodrum reactor. Water Sci. Technol. 29(10–11), 455–462 (1994)Google Scholar
  44. 44.
    Lawrence, J.R., Wolfaardt, G.M., Korber, D.R.: Determination of diffusion coefficients in biofilms by confocal laser microscopy. Appl. Environ. Microbiol. 60(4), 1166–1173 (1994)Google Scholar
  45. 45.
    Kreft, J.-U., Picioreanu, C., Wimpenny, J., Van Loosdrecht, M.: Individual-based modelling of biofilms. Microbiology 147(11), 2897–2912 (2001)Google Scholar
  46. 46.
    Monod, J.: Recherches sur la croissance des cultures bacteriennes, 211 pp. Hermann & Cie, Paris (1942)Google Scholar
  47. 47.
    Picioreanu, C., Kreft, J.-U., Van Loosdrecht, M.: Particle-based multidimensional multispecies biofilm model. Appl. Environ. Microbiol. 70(5), 3024–3040 (2004)CrossRefGoogle Scholar
  48. 48.
    Xavier, J.B., Picioreanu, C., Abdul Rani, S., Van Loosdrecht, M.C.M., Stewart, P.S.: Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix - a modelling study. Microbiology 151(12), 3817–3832 (2005)CrossRefGoogle Scholar
  49. 49.
    Golfier, F., Wood, B.D., Orgogozo, L., Quintard, M., Bues, M.: Biofilms in porous media: development of macroscopic transport equations via volume averaging with closure for local mass equilibrium conditions. Adv. Water Resour. 32(3), 463–485 (2009)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Thomas Guélon
    • 1
  • Jean-Denis Mathias
    • 1
  • Guillaume Deffuant
    • 1
  1. 1.Irstea - LISC (Laboratoire d’Ingénierie des Systèmes Complexes) 24Aubière Cedex 1France

Personalised recommendations