Journal of Biological Physics

, Volume 38, Issue 3, pp 449–464 | Cite as

Modeling temperature entrainment of circadian clocks using the Arrhenius equation and a reconstructed model from Chlamydomonas reinhardtii

  • Ines Heiland
  • Christian Bodenstein
  • Thomas Hinze
  • Olga Weisheit
  • Oliver Ebenhoeh
  • Maria Mittag
  • Stefan Schuster
Original Paper

Abstract

Endogenous circadian rhythms allow living organisms to anticipate daily variations in their natural environment. Temperature regulation and entrainment mechanisms of circadian clocks are still poorly understood. To better understand the molecular basis of these processes, we built a mathematical model based on experimental data examining temperature regulation of the circadian RNA-binding protein CHLAMY1 from the unicellular green alga Chlamydomonas reinhardtii, simulating the effect of temperature on the rates by applying the Arrhenius equation. Using numerical simulations, we demonstrate that our model is temperature-compensated and can be entrained to temperature cycles of various length and amplitude. The range of periods that allow entrainment of the model depends on the shape of the temperature cycles and is larger for sinusoidal compared to rectangular temperature curves. We show that the response to temperature of protein (de)phosphorylation rates play a key role in facilitating temperature entrainment of the oscillator in Chlamydomonas reinhardtii. We systematically investigated the response of our model to single temperature pulses to explain experimentally observed phase response curves.

Keywords

Circadian oscillator Temperature compensation Temperature entrainment Phase response curves Chlamydomonas reinhardtii 

References

  1. 1.
    Johnson, C.H., Elliott, J.A., Foster, R.: Entrainment of circadian programs. Chronobiol. Int. 20, 741–774 (2003)CrossRefGoogle Scholar
  2. 2.
    Rensing, L., Ruoff, P.: Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol. Int. 19, 807–864 (2002)CrossRefGoogle Scholar
  3. 3.
    Pittendrigh, C.S.: On temperature independence in the clock system controlling emergence time in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 40, 1018–1029 (1954)ADSCrossRefGoogle Scholar
  4. 4.
    Waltenberger, H., Schneid, C., Grosch, J.O., Bareiss, A., Mittag, M.: Identification of target mRNAs for the clock-controlled RNA-binding protein Chlamy 1 from Chlamydomonas reinhardtii. Mol. Genet. Genom. 265, 180–188 (2001)CrossRefGoogle Scholar
  5. 5.
    Kiaulehn, S., Voytsekh, O., Fuhrmann, M., Mittag, M.: The presence of UG-repeat sequences in the 3′-UTRs of reporter luciferase mRNAs mediates circadian expression and can determine acrophase in Chlamydomonas reinhardtii. J. Biol. Rhythms 22, 275–277 (2007)CrossRefGoogle Scholar
  6. 6.
    Iliev, D., Voytsekh, O., Schmidt, E.M., Fiedler, M., Nykytenko, A., Mittag, M.: A heteromeric RNA-binding protein is involved in maintaining acrophase and period of the circadian clock. Plant Physiol. 142, 797–806 (2006)CrossRefGoogle Scholar
  7. 7.
    Serrano, G., Herrera-Palau, R., Romero, J.M., Serrano, A., Coupland, G., Valverde, F.: Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling. Curr. Biol. 19, 359–368 (2009)CrossRefGoogle Scholar
  8. 8.
    Matsuo, T., Okamoto, K., Onai, K., Niwa, Y., Shimogawara, K., Ishiura, M.: A systematic forward genetic analysis identified components of the Chlamydomonas circadian system. Genes Dev. 22, 918–930 (2008)CrossRefGoogle Scholar
  9. 9.
    Schmidt, M., Gessner, G., Luff, M., Heiland, I., Wagner, V., Kaminski, M., Geimer, S., Eitzinger, N., Reissenweber, T., Voytsekh, O., Fiedler, M., Mittag, M., Kreimer, G.: Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell 18, 1908–1930 (2006)CrossRefGoogle Scholar
  10. 10.
    Voytsekh, O., Seitz, S.B., Iliev, D., Mittag, M.: Both subunits of the circadian RNA-binding protein CHLAMY1 can integrate temperature information. Plant Physiol. 147, 2179–2193 (2008)CrossRefGoogle Scholar
  11. 11.
    Seitz, S.B., Voytsekh, O., Mohan, K.M., Mittag, M.: The role of an E-box element: multiple functions and interacting partners. Plant Signal. Behav. 5, 1077–1080 (2010)CrossRefGoogle Scholar
  12. 12.
    Mehra, A., Shi, M., Baker, C.L., Colot, H.V., Loros, J.J., Dunlap, J.C.: A role for casein kinase 2 in the mechanism underlying circadian temperature compensation. Cell 137, 749–760 (2009)CrossRefGoogle Scholar
  13. 13.
    Portolés, S., Más, P.: The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis. PLoS Genet. 6, e1001201 (2010)CrossRefGoogle Scholar
  14. 14.
    Seitz, S.B., Weisheit, W., Mittag, M.: Multiple roles and interaction factors of an E-box element in Chlamydomonas reinhardtii. Plant Physiol. 152, 2243–2257 (2010)CrossRefGoogle Scholar
  15. 15.
    Ruoff, P., Rensing, L., Kommedal, R., Mohsenzadeh, S.: Modeling temperature compensation in chemical and biological oscillators. Chronobiol. Int. 14, 499–510 (1997)CrossRefGoogle Scholar
  16. 16.
    Goodwin, B.C.: Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. 3, 425–438 (1965)CrossRefGoogle Scholar
  17. 17.
    Zhao, B., Schneid, C., Iliev, D., Schmidt, E.-M., Wagner, V., Wollnik, F., Mittag, M.: The circadian RNA-binding protein CHLAMY 1 represents a novel type heteromer of RNA recognition motif and lysine homology domain-containing subunits. Eukaryot. Cell 3, 815–825 (2004)CrossRefGoogle Scholar
  18. 18.
    Kucho, K.-I., Okamoto, K., Tabata, S., Fukuzawa, H., Ishiura, M.: Identification of novel clock-controlled genes by cDNA macroarray analysis in Chlamydomonas reinhardtii. Plant Mol. Biol. 57, 889–906 (2005)CrossRefGoogle Scholar
  19. 19.
    Mittag, M.: Conserved circadian elements in phylogenetically diverse algae. Proc. Natl. Acad. Sci. U. S. A. 93, 14401–14404 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    Heinrich, R., Schuster, S.: The Regulation Of Cellular Systems. Chapman & Hall, New York (1996)MATHCrossRefGoogle Scholar
  21. 21.
    Dibner, C., Sage, D., Unser, M., Bauer, C., d’Eysmond, T., Naef, F., Schibler, U.: Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J. 28, 123–134 (2009)CrossRefGoogle Scholar
  22. 22.
    Ruoff, P., Vinsjevik, M., Monnerjahn, C., Rensing, L.: The Goodwin oscillator: on the importance of degradation reactions in the circadian clock. J. Biol. Rhythms 14, 469–479 (1999)CrossRefGoogle Scholar
  23. 23.
    Wolf, J., Becker-Weimann, S., Heinrich, R.: Analysing the robustness of cellular rhythms. Syst. Biol. (Stevenage) 2, 35–41 (2005)CrossRefGoogle Scholar
  24. 24.
    Leloup, J.C., Goldbeter, A.: Temperature compensation of circadian rhythms: control of the period in a model for circadian oscillations of the per protein in Drosophila. Chronobiol. Int. 14, 511–520 (1997)CrossRefGoogle Scholar
  25. 25.
    Hastings, J.W., Sweeney, B.M.: On the mechanism of temperature independence in a biological clock. Proc. Natl. Acad. Sci. U. S. A. 43, 804–811 (1957)ADSCrossRefGoogle Scholar
  26. 26.
    Ito, C., Goto, S.G., Tomioka, K., Numata, H.: Temperature entrainment of the circadian cuticle deposition rhythm in Drosophila melanogaster. J. Biol. Rhythms 26, 14–23 (2011)CrossRefGoogle Scholar
  27. 27.
    Buhr, E.D., Yoo, S.-H., Takahashi, J.S.: Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330, 379–385 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Yoshii, T., Hermann, C., Helfrich-Förster, C.: Cryptochrome-positive and -negative clock neurons in Drosophila entrain differentially to light and temperature. J. Biol. Rhythms 25, 387–398 (2010)CrossRefGoogle Scholar
  29. 29.
    Ruoff, P., Rensing, L.: The temperature-compensated Goodwin model simulates many circadian clock properties. J. Theor. Biol. 179, 275–285 (1996)CrossRefGoogle Scholar
  30. 30.
    Takeuchi, T., Hinohara, T., Kurosawa, G., Uchida, K.: A temperature-compensated model for circadian rhythms that can be entrained by temperature cycles. J. Theor. Biol. 246, 195–204 (2007)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Granada, A.E., Herzel, H.: How to achieve fast entrainment? The timescale to synchronization. PLoS ONE 4, e7057 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Gonze, D., Goldbeter, A.: Entrainment versus chaos in a model for a circadian oscillator driven by light-dark cycles. J. Stat. Phys. 101, 649–663 (2000)ADSMATHCrossRefGoogle Scholar
  33. 33.
    Boulos, Z., Macchi, M.M., Terman, M.: Twilights widen the range of photic entrainment in hamsters. J. Biol. Rhythms 17, 353–363 (2002)CrossRefGoogle Scholar
  34. 34.
    Geier, F., Becker-Weimann, S., Kramer, A., Herzel, H.: Entrainment in a model of the mammalian circadian oscillator. J. Biol. Rhythms 20, 83–93 (2005)CrossRefGoogle Scholar
  35. 35.
    Johnson, C.H.: Forty years of PRCs–what have we learned? Chronobiol. Int. 16, 711–743 (1999)CrossRefGoogle Scholar
  36. 36.
    Rand, D.A., Shulgin, B.V., Salazar, D., Millar, A.J.: Design principles underlying circadian clocks. J. R. Soc. Interface 1, 119–30 (2004)CrossRefGoogle Scholar
  37. 37.
    Bruce, V.G.: Mutants of the biological clock in Chlamydomonas reinhardtii. Genetics 70, 537–548 (1972)Google Scholar
  38. 38.
    Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: COPASI–a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074 (2006)CrossRefGoogle Scholar
  39. 39.
    Rabitz, H., Kramer, M., Dacol, D.: Sensitivity analysis in chemical kinetics. Annu. Rev. Phys. Chem. 34, 419–461 (1983)ADSCrossRefGoogle Scholar
  40. 40.
    Kramer, M.A., Rabitz, H., Calo, J.M.: Sensitivity analysis of oscillatory systems. Appl. Math. Model. 8, 328–340 (1984)MATHCrossRefGoogle Scholar
  41. 41.
    Gunawan, R., Doyle, F.J.: Isochron-based phase response analysis of circadian rhythms. Biophys. J. 91, 2131–2141 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    Ermentrout, G.B., Kopell, N.: Multiple pulse interactions and averaging in systems of coupled neural oscillators. J. Math. Biol. 29, 195–217 (1991)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ines Heiland
    • 1
  • Christian Bodenstein
    • 1
  • Thomas Hinze
    • 1
  • Olga Weisheit
    • 2
  • Oliver Ebenhoeh
    • 3
    • 4
  • Maria Mittag
    • 2
  • Stefan Schuster
    • 1
  1. 1.Department of Bioinformatics, School of Biology and PharmacyFriedrich-Schiller University JenaJenaGermany
  2. 2.Institute of General Botany and Plant PhysiologyFriedrich-Schiller University JenaJenaGermany
  3. 3.Institute of Complex Systems and Mathematical BiologyUniversity of Aberdeen, Meston Building, Meston WalkAberdeenUK
  4. 4.Institute of Medical SciencesUniversity of AberdeenAberdeenUK

Personalised recommendations