Journal of Biological Physics

, Volume 38, Issue 2, pp 317–329 | Cite as

Improved readout precision of the Bicoid morphogen gradient by early decoding

  • Zvi Tamari
  • Naama Barkai
Original Paper


Transcription factors (TFs) bind to specific DNA sequences to induce or repress gene expression. Expression levels can be tuned by changing TF concentrations, but the precision of such tuning is limited, since the fraction of time a TF occupies its binding site is subject to stochastic fluctuations. Bicoid (Bcd) is a TF that patterns the early Drosophila embryo by establishing an anterior-to-posterior concentration gradient and activating specific gene targets (“gap genes”) in a concentration-dependent manner. Recently, the Bcd gradient and its in-vivo diffusion were quantified in live embryos, raising a quandary: the precision by which the Bcd target genes are defined (one-cell resolution) appeared to exceed the physical limits set by the stochastic binding of Bcd to DNA. We hypothesize that early readout of Bcd could account for the observed precision. Specifically, we consider the possibility that gap genes begin to be expressed earlier than typically measured experimentally, at a time when the distance between the nuclei is large. At this time, the difference in Bcd concentration between adjacent nuclei is large, enabling better tolerance for measurement imprecision. We show that such early decoding can indeed increase the accuracy of gap-gene expression, and that the initial pattern can be stabilized during subsequent divisions.


Bicoid Morphogen Noise Stochastic simulation Drosophila Development 



This work was supported by the European Research Council, the Israel Science Foundation, and by the Helen and Martin Kimmel Award for Innovative Investigation.


  1. 1.
    Driever, W., Nusslein-Volhard, C.: The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54, 95–104 (1988)CrossRefGoogle Scholar
  2. 2.
    Driever, W., Thoma, G., Nusslein-Volhard, C.: Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen. Nature 340, 363–367 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    Struhl, G., Struhl, K., Macdonald, P.M.: The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell 57, 1259–1273 (1989)CrossRefGoogle Scholar
  4. 4.
    Burz, D.S., Rivera-Pomar, R., Jackle, H., Hanes, S.D.: Cooperative DNA-binding by Bicoid provides a mechanism for threshold-dependent gene activation in the Drosophila embryo. EMBO J. 17, 5998–6009 (1998)CrossRefGoogle Scholar
  5. 5.
    Lebrecht, D., Foehr, M., Smith, E., Lopes, F.J., Vanario-Alonso, C.E., Reinitz, J., Burz, D.S., Hanes, S.D.: Bicoid cooperative DNA binding is critical for embryonic patterning in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 102, 13176–13181 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Burz, D.S., Hanes, S.D.: Isolation of mutations that disrupt cooperative DNA binding by the Drosophila bicoid protein. J. Mol. Biol. 305, 219–230 (2001)CrossRefGoogle Scholar
  7. 7.
    Ma, X., Yuan, D., Diepold, K., Scarborough, T., Ma, J.: The Drosophila morphogenetic protein Bicoid binds DNA cooperatively. Development 122, 1195–1206 (1996)Google Scholar
  8. 8.
    Yuan, D., Ma, X., Ma, J.: Sequences outside the homeodomain of bicoid are required for protein–protein interaction. J. Biol. Chem. 271, 21660–21665 (1996)CrossRefGoogle Scholar
  9. 9.
    Capovilla, M., Eldon, E.D., Pirrotta, V.: The giant gene of Drosophila encodes a b-ZIP DNA-binding protein that regulates the expression of other segmentation gap genes. Development 114, 99–112 (1992)Google Scholar
  10. 10.
    Eldon, E.D., Pirrotta, V.: Interactions of the Drosophila gap gene giant with maternal and zygotic pattern-forming genes. Development 111, 367–378 (1991)Google Scholar
  11. 11.
    Gaul, U., Jackle, H.: Analysis of maternal effect mutant combinations elucidates regulation and function of the overlap of hunchback and Krüppel gene expression in the Drosophila blastoderm embryo. Development 107, 651–662 (1989)Google Scholar
  12. 12.
    Hoch, M., Gerwin, N., Taubert, H., Jackle, H.: Competition for overlapping sites in the regulatory region of the Drosophila gene Krüppel. Science 256, 94–97 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    Hoch, M., Schroder, C., Seifert, E., Jackle, H.: Cis-acting control elements for Krüppel expression in the Drosophila embryo. EMBO J. 9, 2587–2595 (1990)Google Scholar
  14. 14.
    Hulskamp, M., Pfeifle, C., Tautz, D.: A morphogenetic gradient of hunchback protein organizes the expression of the gap genes Krüppel and knirps in the early Drosophila embryo. Nature 346, 577–580 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    Jackle, H., Tautz, D., Schuh, R., Seifert, E., Lehmann, R.: Cross-regulatory interactions among the gap genes of Drosophila. Nature 324, 668–670 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    Kraut, R., Levine, M.: Mutually repressive interactions between the gap genes giant and Krüppel define middle body regions of the Drosophila embryo. Development 111, 611–621 (1991)Google Scholar
  17. 17.
    Treisman, J., Desplan, C.: The products of the Drosophila gap genes hunchback and Krüppel bind to the hunchback promoters. Nature 341, 335–337 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    Houchmandzadeh, B., Wieschaus, E., Leibler, S.: Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415, 798–802 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Gregor, T., Tank, D.W., Wieschaus, E.F., Bialek, W.: Probing the limits to positional information. Cell 130, 153–164 (2007)CrossRefGoogle Scholar
  20. 20.
    Tostevin, F., ten Wolde, P.R., Howard, M.: Fundamental limits to position determination by concentration gradients. PLoS Comput Biol 3, e78 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Berg, H.C., Purcell, E.M.: Physics of chemoreception. Biophys. J. 20, 193–219 (1977)ADSCrossRefGoogle Scholar
  22. 22.
    Tamari, Z., Barkai, N., Fouxon, I.: Physical aspects of precision in genetic regulation. J. Biol. Phys. 37, 227–238 (2010). doi:10.1007/s10867-010-9208-2 Google Scholar
  23. 23.
    Knipple, D.C., Seifert, E., Rosenberg, U.B., Preiss, A., Jackle, H.: Spatial and temporal patterns of Krüppel gene expression in early Drosophila embryos. Nature 317, 40–44 (1985)ADSCrossRefGoogle Scholar
  24. 24.
    Porcher, A., Abu-Arish, A., Huart, S., Roelens, B., Fradin, C., Dostatni, N.: The time to measure positional information: maternal hunchback is required for the synchrony of the bicoid transcriptional response at the onset of zygotic transcription. Development 137, 2795–2804 (2010)CrossRefGoogle Scholar
  25. 25.
    Pritchard, D.K., Schubiger, G.: Activation of transcription in Drosophila embryos is a gradual process mediated by the nucleocytoplasmic ratio. Genes Dev. 10, 1131–1142 (1996)CrossRefGoogle Scholar
  26. 26.
    Jaeger, J., Sharp, D.H., Reinitz, J.: Known maternal gradients are not sufficient for the establishment of gap domains in Drosophila melanogaster. Mech. Dev. 124, 108–128 (2007)CrossRefGoogle Scholar
  27. 27.
    Gregor, T., Wieschaus, E.F., McGregor, A.P., Bialek, W., Tank, D.W.: Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 130, 141–152 (2007)CrossRefGoogle Scholar
  28. 28.
    Bergmann, S., Tamari, Z., Schejter, E., Shilo, B.Z., Barkai, N.: Re-examining the stability of the bicoid morphogen gradient. Cell 132, 15–17 (2008)CrossRefGoogle Scholar
  29. 29.
    Saunders, T., Howard, M.: When it pays to rush: interpreting morphogen gradients prior to steady-state. Phys. Biol. 6, 046020 (2009)CrossRefGoogle Scholar
  30. 30.
    Gillespie, D.T.: A general method for numerically simulating the time evolution of coupled chemical reactions. J. Comp. Phys. 22, 403–434 (1976)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 71, 2340–2361 (1977)CrossRefGoogle Scholar
  32. 32.
    Doncic, A., Elf, J.: Simulating Intracellular Stochastic Reaction-Diffusion Systems. Uppsala University UPTEC X:02 043 (2002)Google Scholar
  33. 33.
    Hattne, J., Elf, J.: The Algorithms and Implementation of MesoRD. Uppsala University, Department of Information Technology, Scientific Computing (2006)Google Scholar
  34. 34.
    von Smoluchowski, M.: Drei vortrage über diffusion, brownsche bewegung und koagulation von kolloidteilchen. Z. Phys. 17, 557–585 (1916)ADSGoogle Scholar
  35. 35.
    Bergmann, S., Sandler, O., Sberro, H., Shnider, S., Schejter, E., Shilo, B.Z., Barkai N.: Pre-steady-state decoding of the bicoid morphogen gradient. PLoS. Biol. 5, e46 (2007)CrossRefGoogle Scholar
  36. 36.
    de Lachapelle, A.M., Bergmann, S.: Precision and scaling in morphogen gradient read-out. Mol. Syst. Biol. 6, 351 (2010)Google Scholar
  37. 37.
    Driever, W., Nusslein-Volhard, C.: The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature 337, 138–143 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    Hoch, M., Seifert, E., Jackle, H.: Gene expression mediated by cis-acting sequences of the Krüppel gene in response to the Drosophila morphogens bicoid and hunchback. EMBO J. 10, 2267–2278 (1991)Google Scholar
  39. 39.
    Simpson-Brose, M., Treisman, J., Desplan, C.: Synergy between the hunchback and bicoid morphogens is required for anterior patterning in Drosophila. Cell 78, 855–865 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations