Journal of Biological Physics

, Volume 38, Issue 1, pp 113–120 | Cite as

Force field measurements within the exclusion zone of water

  • Chi-Shuo Chen
  • Wei-Ju Chung
  • Ian C. Hsu
  • Chien-Ming Wu
  • Wei-Chun Chin
Original Paper


Water molecules play critical roles in many biological functions, such as protein dynamics, enzymatic activities, and cellular responses. Previous nuclear magnetic resonance and neutron scattering studies have shown that water molecules bind to specific sites on surfaces and form localized clusters. However, most current experimental techniques cannot measure dynamic behaviors of ordered water molecules on cell-size (10 μm) scale. Recently, the long-distance effect of structured water has been demonstrated by Pollack and his colleagues. Namely, there is a structured water layer near the hydrophilic surface that can exclude solutes (Zheng et al, Adv Colloid Interface Sci 127:19–27, 2006; Pollack 2006, Adv Colloid Interface Sci 103:173–196, 2003). The repelling forces of water clusters inside this exclusion region are investigated in this study. With a laser tweezers system, we found the existence of an unexpected force fields inside the solute-free exclusion zone near a Nafion surface. Our results suggest that the water clusters could transduce mechanical signals on the micrometer range within the exclusion zone. This unexpected inhomogeneous force field near the hydrophilic surface would provide a new insight into cellular activities, leading to a potential new physical chemistry mechanism for cell biology.


Water Exclusion zone Nafion Laser tweezers 


  1. 1.
    Zheng, J.-M., Chin, W.-C., Khijniak, E., Khijniak, J.E., Pollack, G.H.: Surfaces and interfacial water: evidence that hydrophilic surfaces have long-range impact. Adv. Colloid Interface Sci. 127, 19–27 (2006)CrossRefGoogle Scholar
  2. 2.
    Pollack, G.H.: Water and the Cell. Springer, New York (2006)CrossRefGoogle Scholar
  3. 3.
    Pollack, G.H.: The role of aqueous interfaces in the cell. Adv. Colloid Interface Sci. 103, 173–196 (2003)CrossRefGoogle Scholar
  4. 4.
    Wiggins, P.M.: Role of water in some biological processes. Microbiol. Rev. 54, 432–449 (1990)Google Scholar
  5. 5.
    Chaplin, M.F.: The memory of water: an overview. Homeopathy 96, 143–150 (2007)CrossRefGoogle Scholar
  6. 6.
    Wilson, E.K.: Watering down science? Chem. Eng. News 87, 32–33 (2009)CrossRefGoogle Scholar
  7. 7.
    Fischer, M.H., Moore, G.: On the swelling of fibrin. Am. J. Physiol. 20, 330–342 (1907)Google Scholar
  8. 8.
    Ernst, E.: Bound water in physics and biology. Acta Biochim. Biophys. Acad. Sci. Hung. 5, 57–69 (1970)Google Scholar
  9. 9.
    Ling, G.N.: Physical state of water in living cell and model systems. Ann. N.Y. Acad. Sci. 125, 401–417 (1965)ADSCrossRefGoogle Scholar
  10. 10.
    Ling, G.N.: Life at the Cell and Below Cell Level. Pacific, New York (2001)Google Scholar
  11. 11.
    Ling, G.N.: In Search of the Physical Basis of Life. Plenum, New York (1984)CrossRefGoogle Scholar
  12. 12.
    Szent-Gyorgyi, A.: The Living State: with Remarks on Cancer. Academic Press, New York (1972)Google Scholar
  13. 13.
    Israelachvili, J.N., McGuiggan, P.M.: Forces between surfaces in liquids. Science 241, 795–800 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    Israelachvili, J., Wennerstrom, H.: Role of hydration and water structure in biological and colloidal interactions. Nature 379, 219–225 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Rand, R.P., Parsegian, V.A., Rau, D.C.: Intracellular osmotic action. Cell. Mol. Life Sci. 57, 1018–1032 (2000)CrossRefGoogle Scholar
  16. 16.
    Ashkin, A., Dziedzic, J.M.: Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986)ADSCrossRefGoogle Scholar
  18. 18.
    Ashkin, A., Dziedzic, J.M., Yamane, T.: Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    Ashkin, A., Schutze, K., Dziedzic, J.M., Euteneuer, U., Schliwa, M.: Force generation of organelle transport measured in vivo by an infrared laser trap. Nature 348, 346–348 (1990)ADSCrossRefGoogle Scholar
  20. 20.
    Lang, M.J., Asbury, C.L., Shaevitz, J.W., Block, S.M.: An automated two-dimensional optical force clamp for single molecule studies. Biophys. J. 83, 491–501 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    Neuman, K.C., Block, S.M.: Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Svoboda, K., Block, S.M.: Optical trapping of metallic Rayleigh particles. Opt. Lett. 19, 930–932 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    Wang, M.D., Yin, H., Landick, R., Gelles, J., Block, S.M.: Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    Bustamante, C., Smith, S.B., Liphardt, J., Smith, D.: Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10, 279–285 (2000)CrossRefGoogle Scholar
  25. 25.
    Svoboda, K., Block, S.M.: Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994)CrossRefGoogle Scholar
  26. 26.
    Chai, B., Pollack, G.H.: Solute-free interfacial zones in polar liquids. J. Phys. Chem. B 114, 5371–5375 (2010)CrossRefGoogle Scholar
  27. 27.
    Yang, T.S., Cui, Y., Wu, C.M., Lo, J.M., Chiang, C.S., Shu, W.Y., Chung, W.J., Yu, C.S., Chiang, K.N., Hsu, I.C.: Determining the zero-force binding energetics of an intercalated DNA complex by a single-molecule approach. Chemphyschem 10, 2791–2794 (2009)CrossRefGoogle Scholar
  28. 28.
    Zheng, J.-M., Wexler, A., Pollack, G.H.: Effect of buffers on aqueous solute-exclusion zones around ion-exchange resins. J. Colloid Interface Sci. 332, 511–514 (2009)CrossRefGoogle Scholar
  29. 29.
    Chai, B., Yoo, H., Pollack, G.H.: Effect of radiant energy on near-surface water. J. Phys. Chem. B 113, 13953–13958 (2009)CrossRefGoogle Scholar
  30. 30.
    Marry, V., Rotenberg, B., Turq, P.: Structure and dynamics of water at a clay surface from molecular dynamics simulation. Phys. Chem. Chem. Phys. 10, 4802–4813 (2008)CrossRefGoogle Scholar
  31. 31.
    Mittal, J., Hummer, G.: Static and dynamic correlations in water at hydrophobic interfaces. Proc. Natl. Acad. Sci. U. S. A. 105, 20130–20135 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Lambeth, B.P., Junghans, C., Kremer, K., Clementi, C., Delle Site, L.: Communication: On the locality of hydrogen bond networks at hydrophobic interfaces. J. Chem. Phys. 133, 221101 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Koefinger, J., Hummer, G., Dellago, C.: Macroscopically ordered water in nanopores. Proc. Natl. Acad. Sci. U. S. A. 105, 13218–13222 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Chaplin, M.: Do we underestimate the importance of water in cell biology? Nat. Rev. Mol. Cell Biol. 7, 861–866 (2006)CrossRefGoogle Scholar
  35. 35.
    Chaplin, M.F.: Water: its importance to life. Biochem. Mol. Biol. Educ. 29, 54–59 (2001)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Chi-Shuo Chen
    • 1
  • Wei-Ju Chung
    • 2
  • Ian C. Hsu
    • 2
  • Chien-Ming Wu
    • 2
  • Wei-Chun Chin
    • 1
  1. 1.BioengineeringUniversity of CaliforniaMercedUSA
  2. 2.Department of Biomedical Engineering and Environmental SciencesNational Tsing-Hua UniversityHsinchuTaiwan

Personalised recommendations