Journal of Biological Physics

, Volume 38, Issue 1, pp 13–26 | Cite as

Water in the orchestration of the cell machinery. Some misunderstandings: a short review

Review

Abstract

Nowadays, biologists can explore the cell at the nanometre level. They discover an unsuspected world, amazingly overcrowded, complex and heterogeneous, in which water, also, is complex and heterogeneous. In the cell, statistical phenomena, such as diffusion, long considered as the main transport for water soluble substances, must be henceforth considered as inoperative to orchestrate cell activity. Results at this level are not yet numerous enough to give an exact representation of the cell machinery; however, they are sufficient to cease reasoning in terms of statistics (diffusion, law of mass action, pH, etc.) and encourage cytologists and biochemists to prospect thoroughly the huge panoply of the biophysical properties of macromolecule-water associations at the nanometre level. Our main purpose, here, is to discuss some of the more common misinterpretations due to the ignorance of these properties, and expose briefly the bases for a better approach of the cell machinery. Giorgio Careri, who demonstrated the correlation between proton currents at the surface of lysozyme and activity of this enzyme was one of the pioneers of this approach.

Keywords

Interfacial water Intracellular diffusion Signal transduction Proton currents Giorgio Careri 

Notes

Acknowledgement

I am very grateful towards Dr. Yolène Thomas for her encouragements.

References

  1. 1.
    Goodsell, D.S.: Inside a living cell. Trends Biochem. Sci. 16, 203–206 (1991)CrossRefGoogle Scholar
  2. 2.
    Goodsell, D.S. (ed.): The Machinery of Life, 2nd edn. Springer, New York (2009)Google Scholar
  3. 3.
    Porter, K.R.: The cytoplasmic matrix and the integration of cellular function. Proc. of a Conference sponsored by Fogarty Internatl. Center, Natl. Institutes of Health. J. Cell Biol. 99, 1–248 (1984)CrossRefGoogle Scholar
  4. 4.
    Porter K.R.: The cytomatrix: a short history of its study. J. Cell Biol. 99, 3–14 (1984)CrossRefGoogle Scholar
  5. 5.
    Zierold, K.: The determination of wet weight concentrations of elements in freeze-dried cryosections from biological cells. Scanning Electron Microsc. 2, 713–724 (1986)Google Scholar
  6. 6.
    Mentré, P. (ed.): Coquille d’hydratation des macromolécules, eau “ liée ” et eau “ structurée ”. In: L’eau dans la cellule. Une interface hétérogène et dynamique des macromolécules, pp. 65–82. Masson-Dunod, Paris (1995)Google Scholar
  7. 7.
    Mentré, P., Hui Bon Hoa, G.: The effects of high hydrostatic pressures on living cells: a consequence of the properties of macomolecules and macromolecule-associated water. Int. Rev. Cytol. 201, 1–84 (2001)CrossRefGoogle Scholar
  8. 8.
    Klotz, I.M.: Water. In: Kasha, M., Pullman, B. (eds.) Horizons in Biochemistry. Albert Szent-Györgyi dedicatory volume, pp. 523–550. Academic, New York (1962)Google Scholar
  9. 9.
    Mentré, P.: An introduction to “Water in the cell”: tamed hydra? In: Water in the Cell (Mentré, P. guest ed.). Cell. Mol. Biol. 47, 709–715 (2001)Google Scholar
  10. 10.
    Leitner, D.M., Gruebele, M., Havenith, M.: Solvation dynamics of biomolecules: modeling and terahertz experiments. HFSP J. 2, 314–323 (2008)CrossRefGoogle Scholar
  11. 11.
    Cameron, I.L., Fullerton, G.D.: Non-bulk like water on cellular interfaces. In: Pollack, G. (ed.) Water and the Cell, pp. 315–323. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. (eds): Molecular motors. In: Molecular Biology of the Cell, 4th ed., pp. 949–968. Garland Science, New York (2002)Google Scholar
  13. 13.
    Lasek, R.J., Garner, J.A., Brady, S.T.: Axonal transport of the cytoplasmic matrix. J. Cell Biol. 99, 212s–221s (1984)CrossRefGoogle Scholar
  14. 14.
    Matveev, V.V.: Protoreaction of protoplasm. In: Water in the Cell (Mentré, P., ed.). Cell. Mol. Biol. 51, 715–723 (2005)Google Scholar
  15. 15.
    Troshin, A.S. (ed.): The protoplasm as a colloidal system. In: Problems of Cell Permeability, pp. 57–73 (1956). Translated from Russian by Widdas, W.F., Pergamon, Oxford (1966)Google Scholar
  16. 16.
    Troshin, A.S.: Do live cells have osmotic properties? In: Problems of Cell Permeability, pp. 30–56 (1956). Translated from Russian by Widdas, W.F., Pergamon, Oxford (1966)Google Scholar
  17. 17.
    Mentré, P. (ed.): L’eau dans la cellule. Une interface hétérogène et dynamique des macromolécules, p. 292. Masson-Dunod (1995)Google Scholar
  18. 18.
    Pollack, G.H.: Cells, Gels and the Engines of Life. A New, Unifying Approach to Cell Function. Ebner, Seattle (2001)Google Scholar
  19. 19.
    Pollack, G.H., Cameron, I.L., Wheatley, D.N. (ed.): Water and the Cell. Springer, New York (2006)Google Scholar
  20. 20.
    Chaplin, M.: http://www.lsbu.ac.uk/water/ (2009)
  21. 21.
    Schrödinger, E. (ed.): What is Life? The Physical Aspects of the Living Cell (1944)Google Scholar
  22. 22.
    Ling, G.N.: Solute exclusion by polymer and protein-dominated water: correlation with results of nuclear magnetic resonance (NMR) and calorimetric studies and their significance for the understanding of the physical state of water in living cells. Scanning Microsc. 2, 871–884 (1988)Google Scholar
  23. 23.
    Hofmeister, F: Zur Lehre von der Wirkung der Salze. Arch. Exp. Pathol. Pharmakol. 24, 247–260 (1888)CrossRefGoogle Scholar
  24. 24.
    Ling, G.N.: A Physical Theory of the Living State: The Association-Induction Hypothesis, pp. 1–680. Blaisdell Waltham (1962)Google Scholar
  25. 25.
    Ling, G.N. (ed.): In Search of the Physical Basis of Life. Plenum, New York (1984)Google Scholar
  26. 26.
    Ling, G.N. (ed.): The membrane pump theory. In: A Revolution in the Physiology of the Living Cell, pp. 9–30. Krieger, Malabar (1992)Google Scholar
  27. 27.
    Wiggins, P., MacClement, B.A.E.: Two states of water found in hydrophobic clefts: their possible contribution to mechanism of action of pumps and other enzymes. Int. Rev. Cytol. 108, 249–304 (1987)CrossRefGoogle Scholar
  28. 28.
    Wiggins, P., Van Ryn, R.T.: Changes in ionic selectivity with changes in density in gels and cells. Biophys. J. 58, 585–596 (1987)CrossRefGoogle Scholar
  29. 29.
    Chen, X., Flores, S.C., Lim, S.M., Zhang, Y., Yang, T., Kherb, J., Cremer, P.: Specific anion effects on water structure adjacent to protein monolayers. Langmuir 26, 16447–16454 (2010)CrossRefGoogle Scholar
  30. 30.
    Zhang, Y., Cremer P.S.: Interactions between macromolecules and ions: the Hofmeister series. Curr. Opinions Chem. Biol. 10, 658–663 (2006)CrossRefGoogle Scholar
  31. 31.
    Glasstone, S. (ed.): Electrochemistry. In: Textbook of Physical Chemistry, pp. 884–1043. MacMillan, London (1948)Google Scholar
  32. 32.
    Simson, J.A.V., Spicer, S.S.: Selective subcellular localization of cations with variants of the potassium (pyro)antimonate technique. J. Histochem. Cytochem. 23, 575–598 (1975)CrossRefGoogle Scholar
  33. 33.
    Mentré, P., Halpern, S.: Localization by pyroantimonate method and electron probe microanalysis of calcium and sodium in skeletal muscle of mouse. J. Histochem. Cytochem. 36, 55–64 (1988)CrossRefGoogle Scholar
  34. 34.
    Mentré, P.: Taking into account the cell water properties for the cytochemical detection of cations: embedding into melamine after pyroantimonate fixation. In: Vasilescu, D., Jaz, J., Packer, L., Pullman, B. (eds.) Water and Ions in Biomolecular Systems. Proceed. 5th Unesco Internatl. Conf., pp. 287–294. Birkhäuser, Basel (1990)Google Scholar
  35. 35.
    Mentré, P.: Preservation of the diffusible cations for SIMS microscopy. I. A problem related to the state of water in the cell. Biol. Cell. 74, 19–30 (1992)CrossRefGoogle Scholar
  36. 36.
    Mentré, P. Halpern, S.: Application of the pyroantimonate method and electron probe microanalysis to the study of glycogen metabolism in liver. Scanning Microsc. 3, 495–504 (1989)Google Scholar
  37. 37.
    Mentré, P. (ed.): Transports au sein de la cellule. In: L’eau dans la cellule. Une interface hétérogène et dynamique des macromolécules, pp. 207–233. Masson-Dunod, Paris (1995)Google Scholar
  38. 38.
    Berridge, M.J., Galone A.: Cytosolic oscillators. FASEB J. 2, 3074–3082 (1988)Google Scholar
  39. 39.
    Rasmussen, H.: The cycling of calcium as an intracellular messenger. Sci. Am. 261, 66–73 (1989)CrossRefGoogle Scholar
  40. 40.
    Swann, K., Ozil, J.P.: Dynamics of the calcium signal that triggers mammalian egg activation: Int. Rev. Cytol. 152, 183–222 (1994)CrossRefGoogle Scholar
  41. 41.
    Rand, R.P.: Raising water to new heights. Science 256, 618 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    Colombo, M.F., Rau, D.C., Parsegian, V.A.: Protein solvation in allosteric regulation: a water effect on hemoglobin? Science 256, 655–659 (1992)ADSCrossRefGoogle Scholar
  43. 43.
    Teissié, J., Prats, M., Soucaille, P., Tocanne, J.F.: Evidence for conduction of protons along the interface between water and a polar lipid monolayer. Proc. Natl. Acad. Sci. U.S.A. 82, 3217–3221 (1985)ADSCrossRefGoogle Scholar
  44. 44.
    Kell, D.B.: On the functional proton current pathway of electron transport phosphorylation. An electrodic view. Biochim. Biophys. Acta 549, 55–99 (1979).Google Scholar
  45. 45.
    Careri, G., Giansanti, A., Rupley J.A.: Proton percolation on hydrated lysozyme powder. Proc. Natl. Acad. Sci. U.S.A. 83, 6810–6814 (1986)ADSCrossRefGoogle Scholar
  46. 46.
    Paddock, M.L., McPherson, P.H., Feher, G., Okamura, M.Y.: Pathway of proton transfer in bacterial reaction centers: replacement of serine-L223 by alanine inhibits electron and proton transfers associated with reduction of quinone to dihydroquinone. Proc. Natl. Acad. Sci. U.S.A. 87, 6803–6807 (1990)ADSCrossRefGoogle Scholar
  47. 47.
    Wikström, M., Verkhovsky, M.I., Hummer, G.: Water-gated mechanism of proton translocation by cytochrome c oxidase. Biochim. Biophys. Acta 1604, 61–65 (2003)CrossRefGoogle Scholar
  48. 48.
    Yin, H., Feng, G., Clore, G.M., Hummer, G., Rasaiah, J.C.: Water in the polar and nonpolar cavities of the protein interleukin-1β. J. Phys. Chem., B. 114, 16290–16297 (2010)CrossRefGoogle Scholar
  49. 49.
    Careri, G., Geraci, M., Giansanti, A., Rupley J.A.: Protonic conduction of hydrated lysozyme powders at megahertz frequencies. Proc. Natl. Acad. Sci. U.S.A. 82, 5342–5346 (1985)ADSCrossRefGoogle Scholar
  50. 50.
    Careri, G., Consolini, G., Bruni F.: Proton conductivity in hydrated proteins. Evidence for percolation. In: Vasilescu, D., Jaz, J., Packer, L., Pullman, B. (eds.) Water and Ions in Biomolecular Systems. Proceed. 5th Unesco Internatl. Conf., pp. 165–170. Birkhäuser, Basel (1990)CrossRefGoogle Scholar
  51. 51.
    Careri, G., Peyrard, M.: Physical aspects of the weakly hydrated protein surface. In: Water in the Cell (Mentré, P. ed.). Cell Mol. Biol. 47, 745–756 (2001)Google Scholar
  52. 52.
    Albrecht-Buelher, G.: In defense of “nonmolecular” biology. Int. Rev. Cytol. 120, 191–241 (1990)CrossRefGoogle Scholar
  53. 53.
    Mentré, P. (ed.): L’eau, une interface hétérogène et dynamique des macromolecules. In: L’eau dans la cellule. Une interface hétérogène et dynamique des macromolécules, pp. 268–275. Masson Dunod, Paris (1995)Google Scholar
  54. 54.
    Robinson, C.R., Sligar, S.G.: Hydrostatic and osmotic pressure as tools to study macromolecular recognition. Methods Enzymol. 259, 395–427 (1995)CrossRefGoogle Scholar
  55. 55.
    Bloom, K., Yeh, E.: Tension management in the kinetochore. Curr. Biol. 20, 1040–1048 (2010)CrossRefGoogle Scholar
  56. 56.
    Jibu, M., Hagan, S., Hameroff, S.R., Pribram, K.H., Yasue, K.: Quantum optical coherence in cytoskeletal microtubules: implications for brain function. Biosystems 32, 195–209 (1994)CrossRefGoogle Scholar
  57. 57.
    Hameroff, S.R., Penrose, R. (eds.): Orchestrated reduction of quantum coherence in brain microtubules: a model for consciousness? In: Toward a Science of Consciousness—The First Tucson Discussions and Debates, pp. 507–540. Cambridge, MIT (1996)Google Scholar
  58. 58.
    Albrecht-Buelher, G.: Cellular infrared detector appears to be contained in the centrosome. Cell Motil. Cytoskelet. 27, 262–271 (1994)CrossRefGoogle Scholar
  59. 59.
    Nihonyanagi, S., Yamaguchi, S., Tahara, T.: Water hydrogen bond structure near highly charged interfaces is not like ice. J. Am. Chem. Soc. 132, 6867–6869 (2010)CrossRefGoogle Scholar
  60. 60.
    Mentré, P.: Organization and properties of water in cell system. In: Greppin, H., Penel, C., Broughton, W.J., Strasser R. (eds.) Integrated Plant Systems, pp. 3–22. University of Geneva, Geneva (2000)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Karşıyaka, İzmirTurkey

Personalised recommendations