Journal of Biological Physics

, Volume 37, Issue 2, pp 167–184 | Cite as

Biological physics in México

Review and new challenges
Perspective

Abstract

Biological and physical sciences possess a long-standing tradition of cooperativity as separate but related subfields of science. For some time, this cooperativity has been limited by their obvious differences in methods and views. Biological physics has recently experienced a kind of revival (or better a rebirth) due to the growth of molecular research on animate matter. New avenues for research have been opened for both theoretical and experimental physicists. Nevertheless, in order to better travel for such paths, the contemporary biological physicist should be armed with a set of specialized tools and methods but also with a new attitude toward multidisciplinarity. In this review article, we intend to somehow summarize what has been done in the past (in particular, as an example we will take a closer look at the Mexican case), to show some examples of fruitful investigations in the biological physics area and also to set a proposal of new curricula for physics students and professionals interested in applying their science to get a better understanding of the physical basis of biological function.

Keywords

Biological physics in México Review and perspectives New curricula 

References

  1. 1.
    Schrödinger, E.: What is life? Cambridge University Press, Cambridge (1992)Google Scholar
  2. 2.
    Kurzynski, M.: The thermodynamic machinery of life, p. 418. Springer, Berlin (2006)Google Scholar
  3. 3.
    Pérez Angón, M.A., Torres Vega, G., Yee Madeira, H. (eds.): Catálogo Latinoamericano 1997 de Programas y Recursos Humanos en Física. Sociedad Mexicana de Física México (1996, in Spanish)Google Scholar
  4. 4.
    Pérez Angón, M.A., Torres Vega, G.: La Física Mexicana en perspectiva: 1986–1996. Interciencia 23(3), 163–175 (1998, in Spanish)Google Scholar
  5. 5.
    Zárate-Pérez, F., Chánez-Cárdenas, M.E., Arreola, R., Torres-Larios, A., Vazquez-Contreras, E.: Different catalytic properties of two highly homologous triosephosphate isomerase monomers. Biochem. Biophys. Res. Commun. 382, 626–630 (2009)CrossRefGoogle Scholar
  6. 6.
    Ramos, S., Campos-Terán, J., Mas-Oliva, J., Nylander, T., Castillo, R.: Forces between hydrophilic surfaces adsorbed with apolipoprotein AII alpha helices. Langmuir 24(16), 8568–8575 (2008)CrossRefGoogle Scholar
  7. 7.
    Gutiérrez-González, L.H., Rojo-Domínguez, A., Cabrera-González, N.E., Pérez-Montfort, R., Padilla-Zúñiga, J.: Loosely-packed papain prosegment displays inhibitory activity. Arch. Biochem. Biophys. 446(2), 151–160 (2006)CrossRefGoogle Scholar
  8. 8.
    Arroyo Reyna, A., Tello Solís, S.R., Rojo Domínguez, A.: Stability parameters for one-step mechanism of irreversible protein denaturation: a method based on nonlinear regression of calorimetric peaks with non-zero ΔCp. Anal. Biochem. 328(2), 123–130 (2004)CrossRefGoogle Scholar
  9. 9.
    Olivares-Quiroz, L., García-Colín, L.S.: Evidence of α-fluctuations in myoglobin’s denaturation in the high temperature region: Average relaxation time from an Adam–Gibbs perspective. Biophys. Chemist. 144(3), 123–129 (2009)CrossRefGoogle Scholar
  10. 10.
    Nájera, H., Dagdug, L., Fernández-Velasco, D.A.: Thermodynamic and kinetic characterization of the association of triosephosphate isomerase: the role of diffusion. Biochim. Biophys. Acta—Proteins & Proteomics 1774(8), 985–994 (2007)CrossRefGoogle Scholar
  11. 11.
    García-Colín, L.S., Dagdug, L., Miramontes, P., Rojo, A. (eds.): La Física Biológica en México: Temas Selectos. El Colegio Nacional (2006, in Spanish)Google Scholar
  12. 12.
    García-Colín, L.S., Dagdug, L., Picquart, M. Vázquez, E. (eds.): La Física Biológica en México: Temas Selectos 2. El Colegio Nacional (2008, in Spanish)Google Scholar
  13. 13.
    García-Colín, L.S., Dagdug, L. (eds.): Introducción a la Física Biológica. El Colegio Nacional (2010, in Spanish)Google Scholar
  14. 14.
    Macias, A., Uribe, F., Diaz, E. (eds.): Developments in Mathematical and Experimental Physics, vols. B & C. Kluwer, Norwell (2003)Google Scholar
  15. 15.
    Uribe, F., Diaz-Herrera, E., García-Colín, L.S.: Statistical Physics and Beyond: Proceedings of the 2nd Mexican Meeting on Mathematical and Experimental Physics. AIP Conference Proceedings, vol. 757 (2004)Google Scholar
  16. 16.
    Dagdug, L., García-Colín, L.S.: Biological Physics: Proceedings of the 3rd Mexican Meeting on Mathematical and Experimental Physics. AIP Conference Proceedings, vol. 978 (2008)Google Scholar
  17. 17.
    Calera, M.R., Wang, Z., Sánchez-Olea, R., Paul, D.L., Civan, M.M., Goodenough, D.A.: Depression of intraocular pressure following inactivation of connexin43 in the nonpigmented epithelium of the ciliary body. Invest. Ophthalmol. Vis. Sci. 50(5), 2185–2193 (2009)CrossRefGoogle Scholar
  18. 18.
    Sánchez-Olea, R., Calera, M.R., Degterev, A.: Molecular pathways involved in cell death after chemically induced DNA damage. EXS 99, 209–230 (2009)Google Scholar
  19. 19.
    Franco, R., Sánchez-Olea, R., Reyes-Reyes, E.M., Panayiotidis, M.I.: Environmental toxicity, oxidative stress and apoptosis: ménage à trois. Mutat. Res. 674(1–2), 3–22 (2009)Google Scholar
  20. 20.
    Arreola, J., Pérez-Cornejo, P.: Functional properties of Ca2+-dependent Cl channels and bestrophins: do they correlate? Advanced Molecular Cell Biology 38, 181–197 (2007)CrossRefGoogle Scholar
  21. 21.
    Arreola, J., Reyes, J.P, Rosales-Saavedra, T., Pérez-Cornejo, P.: Chloride channels activated by intracellular ligands. In: Kew, J., Davies, C. (eds.) Ion Channel Physiology and Pharmacology. Oxford University Press, London (2008)Google Scholar
  22. 22.
    Shieh, R., Chang, J., Arreola, J.: Interaction of Ba2+ with the pores of the cloned inward rectifier K+ channels Kir2.1 expressed in xenopus oocytes. Biophys. J. 75(5), 2313–2322 (1998)CrossRefGoogle Scholar
  23. 23.
    Pastor, N.: The B- to A-DNA transition and the reorganization of solvent at the DNA surface. Biophys. J. 88(5), 3262–3275 (2005)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Escuela Nacional de Biofisica. Available at: http://paginas.fisica.uson.mx/biofisica.molecular/
  25. 25.
    Palomares, R.I., López-Esparza, R., Acuña-Campa, H., Maldonado, A.: Effect of a water-soluble polymer on lamellar surfactant phases. Biophys. J. 96(3), 1, 350a (2008)Google Scholar
  26. 26.
    Palomares, R.I., Acuña-Campa, H., Maldonado, A.: Effect of polymer on the elastic properties of membranes. Biophys. J. 98(3), 275a–276a (2010)Google Scholar
  27. 27.
    López-Esparza, R., Sánchez, M.L.V., Arteaga-Jiménez, A., Beltrán, C., Márquez, C., Maldonado, A.: Effect of PAH concentration on sops liposomes. Biophys. J. 98(3), 274a–274a (2010)CrossRefGoogle Scholar
  28. 28.
    Luna, C., Aranda-Espinosa, H., Maldonado, A., Paredes, G.: Monolayers of a mixed phospholipid system. Biophys. J. 98(3), 461a–461a (2010)Google Scholar
  29. 29.
    Paredes-Quijada, G., Aranda-Espinoza, H., Maldonado, A.: Shapes of mixed phospholipid vesicles. J. Biol. Phys. 32(2), 177–181 (2006)CrossRefGoogle Scholar
  30. 30.
    Jara Oseguera, A., Islas, L.D., García-Villegas, R., Rosenbaum, T.: On the mechanism of TBA block of the TRPV1 channel. Biophys. J. 92(11), 3901–3914 (2007)CrossRefGoogle Scholar
  31. 31.
    Naranjo, D.: Inhibition of single shaker K channels by κ-Conotoxin-PVIIA. Biophys. J. 82(6), 3003–3011 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    García-Pérez, E., Vargas-Caballero, M., Velázquez-Ulloa, N., Minzoni, A., De-Miguel, F.F.: Synaptic integration in electrically coupled neurons. Biophys. J. 86(1), 646–655 (2004)CrossRefGoogle Scholar
  33. 33.
    Jara-Oseguera, A., Islas, L.D., García-Villegas, R., Rosenbaum, T.: On the mechanism of TBA block of the TRPV1 channel. Biophys. J. 92(11), 3901–3914 (2007)CrossRefGoogle Scholar
  34. 34.
    Gonzalez-Amezcua, O., Hernandez-Contreras, M.: Structural thermodynamics of lamellar cationic lipid-DNA complex: DNA compressibility modulus. J. Chem. Phys. 123, 224906(2005)ADSCrossRefGoogle Scholar
  35. 35.
    Gonzalez-Amezcua, O., Hernandez-Contreras, M.: Phase evolution of lamellar cationic lipid-DNA complex: steric effect of an electrolyte. J. Chem. Phys. 121, 10742–10747 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    Taxilaga-Zetina, O., Pliego-Pastrana, P., Carbajal-Tinoco, M.D.: Three-dimensional structures of RNA obtained by means of knowledge-based interaction potentials. Phys. Rev. E 81(4), 041914 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Carbajal-Tinoco, M.D.: An alternative approach to the problem of biomolecular folding. In: Frontiers in Contemporary Physics, AIP Conf. Proc. vol. 1077, pp. 124–134 (2008). doi: 10.1063/1.3040250
  38. 38.
    Capovilla, R., Guven, J.: Stresses in lipid membranes. J. Phys. A Math. Gen. 35(30), 6233 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  39. 39.
    Capovilla, R., Guven, J., Santiago, J.A.: Deformations of the geometry of lipid vesicles. J Phys A Math. Gen. 36(23), 6281 (2003)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Santillán-Zerón, M., Arias-Hernández, L.A., Angulo-Brown, F.: Some optimization criteria for biological systems in linear irreversible thermodynamics. Il Nuovo Cimento D 19 D(1), 99–109 (1997)ADSGoogle Scholar
  41. 41.
    Santillán, M., Mackey, M.C., Zeron,E.S.: Origin of bistability in the lac operon. Biophys. J. 92(11), 3830–3842 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    Santillán, M.: Bistable behavior in a model of the lac operon in Escherichia coli with variable growth rate. Biophys. J. 94(6), 2065–2081 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    Alvarez-Leefmans, F.J., Herrera-Pérez, J.J., Márquez, M.S., Blanco, V.M.: Simultaneous measurement of water volume and pH in single cells using BCECF and fluorescence imaging microscopy. Biophys. J. 90(2), 608–618 (2006)CrossRefGoogle Scholar
  44. 44.
    García, M.C., Carrillo, E., Galindo, J.M., Hernández, A., Copello, J.A., Fill, M., Sánchez, J.A.: Short-term regulation of excitation-contraction coupling by the β-1a subunit in adult mouse skeletal muscle. Biophys. J. 89(6), 3976–3984 (2005)CrossRefGoogle Scholar
  45. 45.
    Dirksen, R.T., Avila, G.: Distinct effects on Ca2+ handling caused by malignant hyperthermia and central core disease mutations in RyR1. Biophys. J. 87(5), 3193–3204 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    Santillán, M., Mackey, M.C.: Influence of catabolite repression and inducer exclusion on the bistable behavior of the lac operon. Biophys. J. 86(3), 1282–1292 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    Santillán, M., Mackey, M.C.: Why the lysogenic state of phage λ is so stable: a mathematical modeling approach. Biophys. J. 86(1), 75–84 (2004)CrossRefGoogle Scholar
  48. 48.
    Gómez-Viquez, L., Guerrero-Serna, G., García, U., Guerrero-Hernández, A.: SERCA pump optimizes Ca2+ release by a mechanism independent of store filling in smooth muscle cells. Biophys. J. 85(1), 370–380 (2003)CrossRefGoogle Scholar
  49. 49.
    Muñoz, A., García, L., Guerrero-Hernández, A.: In situ characterization of the Ca2+ sensitivity of large conductance Ca2+-activated K+ channels: implications for their use as near-membrane Ca2+ indicators in smooth muscle cells. Biophys. J. 75(4), 1774–1782 (1998)CrossRefGoogle Scholar
  50. 50.
    Poltev, V.I., Gonzalez, E., Deriabina, A., Martinez, A., Furmanchuk, A., Gorb, L., Leszczynski, J.: Electron correlated ab initio study of amino group flexibility for improvement of molecular mechanics simulations on nucleic acid conformations and interactions. J. Biol. Phys. 33(5–6), 499–514 (2007)CrossRefGoogle Scholar
  51. 51.
    Hernandez Santiago, A.A., Andrejuk, D.D., Cervantes Tavera, A.M., Davies, D.B., Evstigneev, M.P.: Complexation of biologically active aromatic compounds with DNA in the presence of theophylline. J. Biol. Phys. 35(2), 115–126 (2009)CrossRefGoogle Scholar
  52. 52.
    Garcia-Trejo, J.J., Morales-Rios, E.: Regulation of the F1F0-ATP synthase rotary nanomotor in its monomeric-bacterial and dimeric-mitochondrial forms. J. Biol. Phys. 34(1–2), 197–212 (2008)CrossRefGoogle Scholar
  53. 53.
    Santillán, M., Mackey, M.C.: Dynamic behaviour of the B12 riboswitch. Phys. Biol. 2(1):29-35 (2005)ADSCrossRefGoogle Scholar
  54. 54.
    Ramírez, A., Starostenko, O.: Dependence of dielectrophoretic force on the size of linear erythrocyte aggregates in suspension. Biofizika 51(4), 645–653 (2006)Google Scholar
  55. 55.
    Il’inskii, A.V., Silva-Andrade, F., Shadrin, E.B., Samoilov, V.O., Orbeli, A.L.: Biological structures as photonic objects. Biofizika 51(4), 664–667 (2006)Google Scholar
  56. 56.
    Kreslavski, V.D., Fomina, I.R., Kosobryukhov, A.A., Herbert, S.K., Babykin, M.M., et al.: Influence of oxidative stressors on the photosynthetic apparatus of the methyl viologen-resistant mutant Prq20 of cyanobacterium Synechocystis sp. PCC 6803. Biofizika 52(2), 204–210 (2007)Google Scholar
  57. 57.
    Sánchez-Sandoval, A., Ramírez-Rosales, D., Zamorano-Ulloa, R., Álvarez-Toledano,C., Moya-Cabrera, M., Reyes-Ortega, Y.: New pinch-porphyrin complexes with quantum mixed spin ground state S=3/2,5/2 of iron (III) and their catalytic activity as peroxidase. Biophys. Chemist. 106, 253–265 (2003)CrossRefGoogle Scholar
  58. 58.
    Ruiz-Vega, G., Estevez-Delgado, G.: Non-linearity modeling of ultra-dilutions: the histamine disturbances case. Signals and Images III, 67–82 (2008)CrossRefGoogle Scholar
  59. 59.
    Aldana, M., Larralde, H., Vázquez, B.: On the emergence of collective order in swarming systems: a recent debate. Int. J. Mod. Phys. B 23(18), 3661–3685 (2009)ADSMATHCrossRefGoogle Scholar
  60. 60.
    Deeb, O., Rosales-Hernández, M.C., Gómez-Castro, C., Garduño-Juárez, R., Correa-Basurto, J.: Exploration of human serum albumin binding sites by docking and molecular dynamics flexible ligand-protein interactions. Biopolymers 93(2), 161–170 (2009)CrossRefGoogle Scholar
  61. 61.
    Alvarez-Buylla, E.E., Benítez, M., Aldana, M., Santos, G.J.E., Chaos-Cador, A., Padilla-Longoria, P., Verduzco-Vázquez, R.: Gene regulatory models for plant development and evolution. In: Chong, P.E., Davey, M. (eds.) Plant Developmental Biology (Biotechnological Perspectives), vol. 1, pp. 3–20. Springer, Berlin (2009)Google Scholar
  62. 62.
    Aldana, M., Alvarez-Buylla, E., Balleza, E., Chaos, A., Kauffman, S., Shmulevich, I.: Critical dynamics in genetic regulatory networks: examples from four kingdoms. PLoS ONE 3(6), e2456 (2008)ADSCrossRefGoogle Scholar
  63. 63.
    Aldana, M., Huepe, C., Larralde, H., Pimentel, A.: Intrinsic and extrinsic noise effects on the phase transition of network models with applications to swarming systems. Phys. Rev. E 77, 061138 (2008)CrossRefGoogle Scholar
  64. 64.
    Alvarez Buylla, E., Chaos, A., Aldana, M., Benítez, M., Cortes Poza, Y., Espinosa Soto, C., Hartasanchez, D.A., Beau Lotto, R., Malkin, D., Escalera Santos, G.J., Padilla Longoria, P.: Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. PLoS ONE 3(11), e3626 (2008)ADSCrossRefGoogle Scholar
  65. 65.
    Huepe, C., Aldana, M.: New tools for characterizing swarming systems: a comparison of minimal models. Physica A 387, 2809 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    Nykter, M., Price, N.D., Aldana, M., Ramsey, S., Kauffman, S.A., Hood, L., Yli-Harja, O., Shmulevich, I.: Gene expression dynamics in the macrophage exhibit criticality. Proc. Natl. Acad. Sci. U.S.A. 105(6), 1897 (2008)ADSCrossRefGoogle Scholar
  67. 67.
    Valdéz-González, M., Saint-Martin, H., Hernández-Cobos, J., Sánchez- Marcos, E., Ayala, R., Ortega-Blake, I.: Liquid methanol Monte Carlo simulations with refined potential which includes polarizability, non-additivity and intramolecular relaxation. J. Chem. Phys. 127, 224507 (2007)ADSCrossRefGoogle Scholar
  68. 68.
    Venegas, B., González-Damián, J., Celis, H., Ortega-Blake, I.: Amphotericin B channels in the bacterial membrane: role of sterol and temperature. Biophys. J. 85(4), 2323–2332 (2003)CrossRefGoogle Scholar
  69. 69.
    Saint-Martin, H., Hernández-Cobos, J., Bernal-Uruchurtu, M.I., Ortega-Blake, I., Berendsen, H.J.C.: A mobile charge densities in harmonic oscillators (MCDHO) molecular model for numerical simulations: the water-water interaction. J. Chem. Phys. 113, 10899 (2000)Google Scholar
  70. 70.
    Carrillo-Tripp, M., San-Román, M.L., Jorge Hernández-Cobos, J., Saint-Martin, H., Ortega-Blake, I.: Ion hydration in nanopores and the molecular basis of selectivity. Biophys. Chem. 124(3), 243–250 (2006)CrossRefGoogle Scholar
  71. 71.
    Bonilla-Marín, M., Moreno-Bello, M., Ortega-Blake, I.: A microscopic electrostatic model for the amphotericin B channel. Biochim. Biophys. Acta. (BBA)—Biomembr. 1061(1), 65–77 (1991)Google Scholar
  72. 72.
    Carrillo-Tripp, M., Saint-Martin, H., Ortega-Blake, I.: Minimalist molecular model for nanopore selectivity. Phys. Rev. Lett. 93, 168104 (2004)ADSCrossRefGoogle Scholar
  73. 73.
    Mendoza-Espinosa, P., Moreno, A., Castillo, R., Mas-Oliva, J.: Lipid dependant disorder-to-order conformational transitions in apolipoprotein CI derived peptides. Biochem. Biophys. Res. Commun. 365, 8–15 (2008)CrossRefGoogle Scholar
  74. 74.
    Campos-Terán, J., Mas-Oliva, J., Castillo, R.: Interactions and conformations of α-helical human apolipoprotein CI on hydrophilic and on hydrophobic substrates. J. Phys. Chem. B 108, 20442 (2004)CrossRefGoogle Scholar
  75. 75.
    García, A., Soto-Ramírez, L.E., Cocho, G., Govezensky, T., Jose, M.V.: HIV-1 dynamics at different time scales under antiretroviral therapy. J. Theor. Biol. 238(2), 220–229 (2005)Google Scholar
  76. 76.
    Boyer, D., Miramontes, O., Ramos-Fernandez, G., Mateos, J.L., Cocho, G.: Modeling the search behavior of social monkeys. Physica A 342(3), 329–335 (2004)ADSCrossRefGoogle Scholar
  77. 77.
    Siódmiak, J., Uher, J.J., Santamaría-Holek, I., Kruszewska, N., Gadomski, A.: On the protein crystal formation as an interface-controlled process with prototype ion-channeling effect. J. Biol. Phys. 33(4), 313–329 (2008)CrossRefGoogle Scholar
  78. 78.
    Hernández-Zapata, E., Martínez-Balbuena, L., Santamaría-Holek, I.: Thermodynamics and dynamics of the formation of spherical lipid vesicles. J. Biol. Phys. 35(3), 297–308 (2009)CrossRefGoogle Scholar
  79. 79.
    Cano-González, M.E., Castañeda-Priego, R., Gil-Villegas, A., Sosa, M., et al.: Magnetic properties of synthetic eumelanin: preliminary results. Photochem. Photobiol. 84, 627–631 (2008)CrossRefGoogle Scholar
  80. 80.
    Córdoba-Valdés, F., Fleck, C., Castañeda-Priego, R.: Hard-colloidal particles in contact with fluctuating membranes. Rev. Mex. Fis. 53, 475 (2007)Google Scholar
  81. 81.
    Castañeda-Priego, R., von Grünberg, H.H., Kollmann, M.: Electrohydrodynamic instabilities of DNA aggregates: a mean field description. J. Phys. Condens. Matter 16, S3987–S3998 (2004)ADSCrossRefGoogle Scholar
  82. 82.
    Jiménez-Montaño, M.A., Matthew, H.: Irreplaceable amino acids and reduced alphabets in short-term and directed protein evolution. In: Mandoiu, I, Narasimhan, G., Zhang, Y. (eds.) Bioinformatics Research and Applications, pp. 297-309. Springer, Berlin (2009)Google Scholar
  83. 83.
    Jiménez-Montaño, M.A., Hernandez-Montoya, A.R., Cruz-Ramírez, N., Coronel-Brizio, H.F., Ramos-Fernandez, A.: Codon substitution probability distributions of replaceable and irreplaceable amino acids in short-term evolution. In: Proceedings of the 5th International Symposium on Bioinformatics Research and Applications. Fort Lauderdale, Florida (2009)Google Scholar
  84. 84.
    Sánchez-Cordero, V., Stockwell, D., Sarkar, S., Liu, H., Stephens, C.R., Giménez, J.: Competitive interactions between felid species may limit the southern distribution of bobcats Lynx rufus. Ecography 31, 757–764 (2008)CrossRefGoogle Scholar
  85. 85.
    Stephens, C.R., Zamora, A.: Systematic approximations for genetic dynamics. Adv. Complex Systems 12, 583–618 (2009)MathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    Stephens, C.R., Heau, J.G., González, C., Ibarra-Cerdeña, C.N., Sánchez-Cordero, V., González-Salazar, C.: Using biotic interaction networks for prediction in biodiversity and emerging diseases. PLoS ONE 4, e5725 (2009)ADSCrossRefGoogle Scholar
  87. 87.
    Flores, J., Corvera Poiré, E., Del Río, J.A., López de Haro, M.: A plausible explanation for heart rates in mammals. J. Theor. Biol. 265, 599–603 (2010)CrossRefGoogle Scholar
  88. 88.
    Mantilla-Beniers, N.B, Bjørnstad, O.N., Grenfell, B.T., Rohani, P.: Decreasing stochasticity through enhanced seasonality in measles epidemics. Journal of The Royal Society Interface 7(46), 727–739 (2010)CrossRefGoogle Scholar
  89. 89.
    Ojeda, P., Garcia, M.E., Londoño, A., Chen, N.: Monte Carlo simulations of proteins in cages: influence of confinement on the stability of intermediate status. Biophys. J. 96(3), 1076–1082 (2009)ADSCrossRefGoogle Scholar
  90. 90.
    Monsivais, M.P., Navarro-Munoz, J.C., Riego-Ruiz, L., Lopez-Sandoval, R., Rosu, H.C.: Including transcription factor information in the superparamagnetic clustering of microarray data. Physica A 389, 5689–5697 (2010)ADSCrossRefGoogle Scholar
  91. 91.
    Espinoza-Valdez, A., Ordaz-Salazar, F.C., Femat, R.: A model for renal arterial branching based on graph theory. Math. Biosci. 225, 36–43 (2010)MathSciNetMATHCrossRefGoogle Scholar
  92. 92.
    Quiroz, G., Femat, R.: Theoretical blood glucose control in hyper-hypoglycemic and exercise scenarios by means of a H∞ decision algorithm. J. Theor. Biol. 263, 154–160 (2010)CrossRefGoogle Scholar
  93. 93.
    Nomura, K., Ferrat, G., Nakajima, T., Darbon, H., Iwashita, T., Corzo, G.: Induction of morphological changes in model lipid membranes and the mechanism of membrane disruption by a large scorpion-derived pore-forming peptide. Biophys. J. 89(6), 4067–4080 (2005)CrossRefGoogle Scholar
  94. 94.
    Nomura, K., Corzo, G., Nakajima, T., Iwashita, T.: Orientation and pore-forming mechanism of a scorpion pore-forming peptide bound to magnetically oriented lipid bilayers. Biophys. J. 87(4), 2497–2507 (2004)ADSCrossRefGoogle Scholar
  95. 95.
    Pottosin, I.I., Martínez-Estévez, M.: Regulation of the fast vacuolar channel by cytosolic and vacuolar potassium. Biophys. J. 84(2), 977–986 (2003)CrossRefGoogle Scholar
  96. 96.
    Pottosin, I.I., Dobrovinskaya, O.R., Muñiz, J.: Cooperative block of the plant endomembrane ion channel by ruthenium red. Biophys. J. 77(4), 1973–1979 (1999)CrossRefGoogle Scholar
  97. 97.
    Gómez-Lagunas, F.: Stability of the shab K+ channel conductance in 0 K+ solutions: the role of the membrane potential. Biophys. J. 93(12), 4197–4208 (2007)CrossRefGoogle Scholar
  98. 98.
    Gómez-Lagunas, F.: Barium inhibition of the collapse of the shaker K+ conductance in zero K+. Biophys. J. 77(6), 2988–2998 (1999)CrossRefGoogle Scholar
  99. 99.
    Varmus, H.: The impact of physics on biology and medicine. Physicsworld, 3rd edn. A website from the American Institute of Physics (1999)Google Scholar
  100. 100.
    Ouellette, J.: Switching from physics to biology. Ind. Phys. (2003, published by the American Institute of Physics)Google Scholar
  101. 101.
    Maxam, A.M., Gilbert, W.: A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74(2), 560–564 (1977) (see also http://nobelprize.org/nobel_prizes/chemistry/laureates/1980/gilbert.html)Google Scholar
  102. 102.
    Delcher, A.L., Kasif, S., Fleischmann, R.D., Peterson, J., White, O., Salzberg, S.L.: Alignment of whole genomes. Nucleic Acids Res. 27(11), 2369–2376 (1999)CrossRefGoogle Scholar
  103. 103.
    Pearson, W., Lipman, D.: Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. U.S.A. 85, 2444–2448 (1988)ADSCrossRefGoogle Scholar
  104. 104.
    Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., Califano, A.: ARACNe: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl I), S7 (2006). doi: 10.1186/1471-2105-7-S1-S7
  105. 105.
    Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer gene networks from expression profiles. Mol. Syst. Biol. 3, 78 (2007)Google Scholar
  106. 106.
    Berg, J.: Dynamics of gene expression and the regulatory inference problem. Europhys. Lett. 82, 28010 (2008)ADSCrossRefGoogle Scholar
  107. 107.
    Berg, J.: Out-of-equilibrium dynamics of gene expression and the Jarzynski equality. Phys. Rev. Lett. 100, 188101 (2008)ADSCrossRefGoogle Scholar
  108. 108.
    Berg, J., Stauffer, D.: Adaptive gene regulatory networks. Europhys. Lett. 88, 48004 (2009)Google Scholar
  109. 109.
    Benecke, A.: Gene regulatory network inference using out of equilibrium statistical mechanics. HFSP J. 2(4), 183–188 (2008)CrossRefGoogle Scholar
  110. 110.
    Sánchez, A., Kondev, J.: Transcriptional control of noise in gene expression. Proc. Natl. Acad. Sci. USA 105(13), 5081–5086 (2008)ADSCrossRefGoogle Scholar
  111. 111.
    Lesley, S.A.: High-throughput proteomics: protein expression and purification in the postgenomic world. Protein Expr. Purif. 22(2), 159–164 (2001)CrossRefGoogle Scholar
  112. 112.
    Carstea, A.S., Ramani, A., Tamizhmani, K.M., Grammaticos, B.: Proteomic signals in simple transcriptional cascades. Chaos, Solitons Fractals 41(4), 1823–1827 (2009)ADSCrossRefGoogle Scholar
  113. 113.
    Myong, S., Rasnik, I., Joo, C., Lohman, T.M., Ha, T.: Repetitive shuttling of a motor protein on DNA. Nature 437, 1321–1325 (2005)ADSCrossRefGoogle Scholar
  114. 114.
    Matthias Mann, M., Kelleher, N.L.: Precision proteomics: The case for high resolution and high mass accuracy. Proc. Natl. Acad. Sci. USA 105, 18132 (2008)ADSCrossRefGoogle Scholar
  115. 115.
    Levinthal, C.: Are there pathways for protein folding? J. Chim. Phys. et de Physico-Chimie Biologique 65, 44–45 (1968) (see also Levinthal, C.: In: Debrunner, P., Tsibris, J.C.M., Munck, E. (eds.) Mossbauer Spectroscopy in Biological Systems, University of Illinois, Urbana. pp. 22–24. (1969))Google Scholar
  116. 116.
    Olivares-Quiroz, L., García-Colín, L.S.: Protein’s native state stability in a chemically induced denaturation mechanism. J. Theor. Biol. 246(2), 214–224 (2007)CrossRefGoogle Scholar
  117. 117.
    Tabi, C.B., Mohamadou, A., Kofané, T.C.: Long-range interactions and wave patterns in a DNA model. Eur. Phys. J. E Soft Matter (2010)Google Scholar
  118. 118.
    Lee, J, Kim, Y.G., Kim, K.K., Seok, C.: Transition between B-DNA and Z-DNA: free energy landscape for the B-Z junction propagation. J. Phys. Chem. B 114(30), 9872–9881 (2010)CrossRefGoogle Scholar
  119. 119.
    Olivares-Quiroz, L., García-Colín, L.S.: Plegamiento de las proteínas: Un problema interdisciplinario. Rev. Soc. Quím Méx. 48, 95–105 (2004, in Spanish)Google Scholar
  120. 120.
    Bryngelson, J.D., Wolynes, P.G.: Intermediates and barrier crossing in a random energy model (with applications to protein folding). J. Phys. Chem. 93, 6902 (1989)CrossRefGoogle Scholar
  121. 121.
    Fernández, A., Kostov, K., Berry, R.S.: From residue matching to protein folding topographies: general model and bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. U.S.A. 96(23), 12991–12996 (1999)ADSCrossRefGoogle Scholar
  122. 122.
    González-Candela, E., Romero-Rochín, V.: Overdamped thermal ratchets in one and more dimensions. Kinesin transport and protein folding. Physica A 372, 249–262 (2006)ADSCrossRefGoogle Scholar
  123. 123.
    Austin, R.H., Beeson, K.W., Eisenstein, L., Frauenfelder, H., Gunsalus, I.C.: Dynamics of ligand binding to myoglobin. Biochem. 14(24), 5355–5373 (1975)CrossRefGoogle Scholar
  124. 124.
    Johnson, F.H., Eyring, H., Jones Stover, B.: The Theory of Rate Processes in Biology and Medicine. Wiley, New York (1974)Google Scholar
  125. 125.
    Agre, P., King, L.S., Yasui, M., Guggino, W.B., Ottersen, O.P., Fujiyoshi, Y., Engel, A., Nielsen, S.: Aquaporin water channels: From atomic structure to clinical medicine. J. Physiol. 542, 3–16 (2002)CrossRefGoogle Scholar
  126. 126.
    de Groot, B.L., Grubmüller, H.: Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294, 2353–2357 (2001)ADSCrossRefGoogle Scholar
  127. 127.
    de Groot, B.L., Grubmüller, H.: The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr. Opin. Struct. Biol. 15, 176–183 (2005)CrossRefGoogle Scholar
  128. 128.
    Zaccai, G.: Moist and soft, dry and stiff: a review of neutron experiments on hydration-dynamics-activity relations in the purple membrane of Halobacterium salinarum. Biophys. Chemist. 86(2–3), 249–257 (2000)CrossRefGoogle Scholar
  129. 129.
    Müller, M.J., Klumpp, S., Lipowsky, R.: Bidirectional transport by molecular motors: enhanced processivity and response to external forces. Biophys. J. 98(11), 2610–2618 (2010)CrossRefGoogle Scholar
  130. 130.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K.: Molecular Biology of the Cell. Garland Science, New York (2002)Google Scholar
  131. 131.
    Hernández-Lemus, E.: Non-equilibrium thermodynamics of transcriptional bursts. In: Macías, A., Dagdug, L. (eds.) New Trends in Statistical Physics: Festschrift in honor of Leopoldo García-Colín’s 80th Birthday. World Scientific, Hackensack (2010)Google Scholar
  132. 132.
    Hernández-Lemus, E.: Non-equilibrium thermodynamics of gene expression and transcriptional regulation. J. Non-Equilib. Thermodyn. 34(4), 371–394 (2009)CrossRefGoogle Scholar
  133. 133.
    Baca-López, K., Hernández-Lemus, E., Mayorga, M.: Information-theoretical analysis of gene expression data to infer transcriptional interactions. Rev. Mex. Fis. 55(6), 456–466 (2009)Google Scholar
  134. 134.
    Hernández-Lemus, E., Velázquez-Fernández, D., Estrada-Gil, J.K., Silva-Zolezzi, I., Herrera-Hernández, M.F., Jiménez-Sánchez, G.: Information theoretical methods to deconvolute genetic regulatory networks applied to thyroid neoplasms. Physica A 388, 5057–5069 (2009)ADSCrossRefGoogle Scholar
  135. 135.
    Hernández-Lemus, E., Estrada-Gil, J.K., Silva-Zolezzi, I., Fernández-López, J.C., Hidalgo- Miranda, A., Jiménez-Sánchez, G.: Nonlinear analysis of time series in genome-wide linkage disequilibrium data. American Institute of Physics Conf. Proc., (Biological Physics), vol. 978, no. 1. pp. 34–56 (2008)Google Scholar
  136. 136.
    Favale, N.O., Fernández-Tome, M.C., Pescio, L.G., Sterin-Speziale, N.B.: The rate-limiting enzyme in phosphatidylcholine synthesis is associated with nuclear speckles under stress conditions. Biochim. Biophys. Acta. (2010). doi: 10.1016/j.bbalip.2010.07.003
  137. 137.
    Stryer, L., Berg, J.M., Tymoczko, J.M.: Biochemistry, 5th edn. Freeman, New York (2002)Google Scholar
  138. 138.
    Thomson, C.J.: Models for hemoglobin and allosteric enzymes. Biopolymers 6, 1101 (1968) (see also the theoretical background for such models, Thomson, C.J.: Algebraic derivation of the partition function of a two-dimensional Ising model. J. Math. Phys. 6, 1392 (1965))Google Scholar
  139. 139.
    Ma, Y., Chen, X., Sun, M., Wan, R., Zhu, C., Li, Y., Zhao, Y.: DNA cleavage function of seryl-histidine dipeptide and its application. Amino Acids 35(2), 251–256 (2008)CrossRefGoogle Scholar
  140. 140.
    Baylor, D.A., Lamb, T.D., Yau, K.W.: Response of retinal rods to single photons. J. Physiol. Lond. 288, 613–634 (1979)Google Scholar
  141. 141.
    Hecht, S., Schlaer, S., Pirenne, M.H.: Energy, quanta and vision. J. Opt. Soc. Am. A 38, 196–208 (1942)Google Scholar
  142. 142.
    Andersson, J., Borg-Karlson, A.K., Vongvanich, N., Wiklund, C.: Male sex pheromone release and female mate choice in a butterfly. J. Exp. Biol. 210(6), 964–970 (2007)CrossRefGoogle Scholar
  143. 143.
    Kim, R., Choi, C-R.: Minimally complex problem set for an ab initio protein structure prediction study. Biotechnol. Bioprocess Eng. 9(5), 414 418 (2004)MathSciNetCrossRefGoogle Scholar
  144. 144.
    Ruch, O., Réfrégier, P.: Minimal-complexity segmentation with a polygonal snake adapted to different optical noise models. Opt. Lett. 26(13), 977–979 (2001)ADSCrossRefGoogle Scholar
  145. 145.
    Barron, A.R., Cover, T.M.: Minimum complexity density estimation. IEEE Trans. Inf. Theory 37(4), 1034–1054 (1991)MathSciNetMATHCrossRefGoogle Scholar
  146. 146.
    Peterman, E.J., Scholey, J.M.: Mitotic microtubule crosslinkers: insights from mechanistic studies. Curr. Biol. 19(23), R1089–R1094 (2009)CrossRefGoogle Scholar
  147. 147.
    Echeverria, P.C., Picard, D.: Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim. Biophys. Acta. 1803(6), 641–649 (2010)CrossRefGoogle Scholar
  148. 148.
    Sykes, M.T., Williamson, J.R.: A complex assembly landscape for the 30S ribosomal subunit. Annu. Rev. Biophys. 38, 197–215 (2009)CrossRefGoogle Scholar
  149. 149.
    Astumian, R.D., Derényi, I.: Fluctuation driven transport and models of molecular motors and pumps. Eur. Biophys. J. 27(5), 474–489 (1998)CrossRefGoogle Scholar
  150. 150.
    Seelert, H., Poetsch, A., Dencher, N.A., Engel, A., Stahlberg, H., Müller, D.J.: Structural biology. Proton-powered turbine of a plant motor. Nature 405(6785), 418–419 (2000)ADSCrossRefGoogle Scholar
  151. 151.
    Gurudatta, B.V., Corces, V.G.: Chromatin insulators: lessons from the fly. Brief. Funct. Genomics Proteomics 4, 276–282 (2009) (see also Bushey, A.M., Dorman, E.R., Corces, V.G.: Chromatin insulators: regulatory mechanisms and epigenetic inheritance. Mol. Cell 32(1), 1–9 (2008))Google Scholar
  152. 152.
    Dokholyan, N., Buldyrev, S.V., Havlin, S., Stanley, H.R.: Distributions of dimeric tandem repeats in non-coding and coding DNA sequences. J. Theor. Biol. 202, 273–282 (2000)CrossRefGoogle Scholar
  153. 153.
    Nicolay, S., Brodie of Brodie, E.B., Touchon, M., d’Aubenton-Carafa, Y., Thermes, C., Arneodo, A.: From scale invariance to deterministic chaos in DNA sequences: towards a deterministic description of gene organization in the human genome. Physica A 342, 270–280 (2004)Google Scholar
  154. 154.
    Ashkenazy, Y., Ivanov, P. Ch., Havlin, S., Peng, C.-K., Yamamoto, Y., Goldberger, A.L., Stanley, H.E.: Decomposition of heartbeat time series: scaling analysis of the sign sequence. Comput. Cardiol. 27, 139–142 (2000)Google Scholar
  155. 155.
    Kantelhardt, J.W., Zschiegner, S., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley, H.E.: Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316, 87–114 (2002)ADSMATHCrossRefGoogle Scholar
  156. 156.
    Yang, A.C., Hseu, S.S., Yien, H.W., Goldberger, A.L., Peng, C.K.: Linguistic analysis of the human heartbeat using frequency and rank order statistics. Phys. Rev. Lett. 90, 108103 (2003)ADSCrossRefGoogle Scholar
  157. 157.
    Chialvo, D.R.: Critical brain networks. Physica A 340, 756–765 (2004)ADSCrossRefGoogle Scholar
  158. 158.
    Chialvo, D.R., Balenzuela, P., Fraiman, D.: The brain: what is critical about it? AIP Conf. Proc. 1028, 28–45 (2008)MathSciNetADSCrossRefGoogle Scholar
  159. 159.
    Kitzbichler, M.G., Smith, M.L., Christensen, S.R., Bullmore, E.: Broadband criticality of human brain network synchronization. PLoS Comput. Biol. 5, e1000314 (2009). doi: 10.1371/journal.pcbi.1000314 MathSciNetCrossRefGoogle Scholar
  160. 160.
    Fraiman, D., Balenzuela, P., Foss, J., Chialvo, D.R.: Ising-like dynamics in large-scale functional brain networks. Phys. Rev. E 79, 061922 (2009)ADSCrossRefGoogle Scholar
  161. 161.
    Werner, G.: Metastability, criticality, and phase transitions in brain and its models. BioSystems 90, 496–508 (2007) (see also Werner, G.: Viewing brain processes and critical state transitions across levels of organization: neural events in cognition and consciousness, and general principles. BioSystems 96, 114–119 (2009); and Werner, G.: Consciousness related neural events viewed as brain state space transitions. Cogn. Neurodyn. 3, 83–95 (2009))Google Scholar
  162. 162.
    Werner, G.: Fractals in the nervous system: conceptual implications for theoretical neuroscience. Frontiers in Physiology 1(15), 1–28 (2010)Google Scholar
  163. 163.
    Senning, E.N., Marcus, A.H.: Subcellular dynamics and protein conformation fluctuations measured by Fourier imaging correlation spectroscopy. Annu. Rev. Phys. Chem. 61, 111–128 (2010)CrossRefGoogle Scholar
  164. 164.
    Simpson, M.L., Cox, C.D., Allen, M.S., McCollum, J.M., Dar, R.D., Karig, D.K., Cooke, J.F.: Noise in biological circuits. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(2), 214–225 (2009)CrossRefGoogle Scholar
  165. 165.
    Elsasser, W.M.: Biological application of the statistical concepts used in the second law. J. Theor. Biol. 105(1), 103–116 (1983)CrossRefGoogle Scholar
  166. 166.
    Elsasser, W.M.: The other side of molecular biology. J. Theor. Biol. 96(1), 67–76 (1982)CrossRefGoogle Scholar
  167. 167.
    Elsasser, W.M.: Principles of a new biological theory: a summary. J. Theor. Biol. 89(1), 131–150 (1981)CrossRefGoogle Scholar
  168. 168.
    Nelson, P.: Biological Physics: Energy, Information, Life. W.H. Freeman, New York (2003)Google Scholar
  169. 169.
    Phillips, R., Konder, J., Theriot, J.: Physical Biology of the Cell. Garland Publishing, New York/Oxford (2008)Google Scholar
  170. 170.
    Cotterill, R.: Biophysics: An Introduction. Wiley, New York (2002)Google Scholar
  171. 171.
    Hernández-Lemus, E.: Fenómenos multiescala, complejidad y flujos de información en sistemas biológicos. In: García-Colín, L.S., Dagdug, L., Picquart, M., Vázquez, E. (eds.) La Física Biológica en México: Temas Selectos, vol. 2. El Colegio Nacional (2008, in Spanish)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Departamento de Genómica ComputacionalInstituto Nacional de Medicina GenómicaMéxico, D.F.México
  2. 2.Centro de Ciencias de la ComplejidadUniversidad Nacional Autónoma de MéxicoMéxico, D.F.México

Personalised recommendations