Journal of Biological Physics

, Volume 37, Issue 2, pp 227–238

Torque-induced deformations of charged elastic DNA rods: thin helices, loops, and precursors of DNA supercoiling

Original Paper

Abstract

We study the deformations of charged elastic rods under applied end forces and torques. For neutral filaments, we analyze the energetics of initial helical deformations and loop formation. We supplement this elastic approach with electrostatic energies of bent filaments and find critical conditions for buckling depending on the ionic strength of the solution. We also study force-induced loop opening, for parameters relevant for DNA. Finally, some applications of this nano-mechanical DNA model to salt-dependent onset of the DNA supercoiling are discussed.

Keywords

DNA elasticity DNA electrostatics Buckling instability DNA supercoiling 

References

  1. 1.
    van der Heijden, G.H.M., Neukirch, S., Goss, V.G.A., Thompson, J.M.T.: Instability and self-contact phenomena in the writhing of clamped rod. Int. J. Mech. Sci. 45, 161–196 (2003)MATHCrossRefGoogle Scholar
  2. 2.
    Maddocks, J.H.: Stability of nonlinear elastic rods. Arch. Ration. Mech. Anal. 85, 311–354 (1984)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Neukirch, S., van der Heijden, G.H.M., Thompson, J.M.T.: Writhing instabilities of twisted rods: from infinite to finite length. J. Mech. Phys. Solids 50, 1175–1191 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Kulic, I.M., Schiessel, H.: DNA Spools under Tension. Phys. Rev. Lett. 92, 228101 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Kulic, I.M., Mohrbach. H., Thaokar, R., Schiessel, H.: Equation of state of looped DNA. Phys. Rev. E 75, 011913 (2007)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Hansen, P.L., Podgornik, R., Svensek, D., Parsegian, V.A.: Buckling, fluctuations, and collapse in semiflexible polyelectrolytes. Phys. Rev. E 60, 1956–1966 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Cherstvy, A.G.: DNA Cholesteric Phases: The Role of DNA Molecular Chirality and DNA-DNA Electrostatic Interactions. J. Phys. Chem. B 112, 12585–12595 (2008)CrossRefGoogle Scholar
  8. 8.
    Cherstvy, A.G.: Probing DNA-DNA electrostatic friction in tight superhelical DNA plies. J. Phys. Chem. B 113, 5350–5355 (2009)CrossRefGoogle Scholar
  9. 9.
    Rybenkov, V.V., Vologodskii, A.V., Cozzarelli, N.R.: The Effect of Ionic Conditions on DNA Helical Repeat, Effective Diameter and Free Energy of Supercoiling. Nucleic Acids Res. 25, 1412–1418 (1997)CrossRefGoogle Scholar
  10. 10.
    Clauvelin, N., Audoly, B., Neukirch, S.: Elasticity and Electrostatics of Plectonemic DNA. Biophys. J. 96, 3716–3723 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Marko, J.F.: Supercoiled and braided DNA under tension. Phys. Rev. E 55, 1758–1772 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    Marko, J.F.: Torque and dynamics of linking number relaxation in stretched supercoiled DNA. Phys. Rev. E 76, 021926 (2007)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Fenley, M., Olson, W.K., Tobias, I., Manning, G.S.: Electrostatic effects in short superhelical DNA. Biophys. Chem. 50, 255–271 (1994)CrossRefGoogle Scholar
  14. 14.
    Schlick, T., Li, B., Olson, W.K.: The influence of salt on the structure and energetics of supercoiled DNA. Biophys. J. 67, 2146–2166 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    Swigon, D., Coleman, B.D., Olson, W.K.: Modeling the Lac repressor-operator assembly: The influence of DNA looping on Lac repressor conformation. Proc. Natl. Acad. Sci. U.S.A. 103, 9879–9884 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Balaeff, A., Mahadevan, L., Schulten, K.: Modeling DNA loops using the theory of elasticity. Phys. Rev. E 73, 031919 (2006)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Cherstvy, A.G.: Looping charged elastic rods: applications to protein-induced DNA loop formation. Eur. Biophys. J. 40, 69–81 (2011)CrossRefGoogle Scholar
  18. 18.
    Wilson, D.P., Tkachenko, A.V., Meiners, J.-C.: A generalized theory of DNA looping and cyclization. Europhys. Lett. 89, 58005 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Baumann, C.G., Smith, S.B., Bloomfield, V.A., Bustamante, C.: Ionic effects on the elasticity of single DNA molecules. Proc. Natl. Acad. Sci. U.S.A. 94, 6185–6190 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    Kornyshev, A.A., Lee, D.J., Leikin, S., Wynveen, A.: Structure and interactions of biological helices. Rev. Mod. Phys. 79, 943–996 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Love, A.E.H.: Treatise on the Mathematical Theory of Elasticity. Dover, NY (1944)MATHGoogle Scholar
  22. 22.
    Manning, G.S.: The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. 11, 179–246 (1978)CrossRefGoogle Scholar
  23. 23.
    Manning, G.S.: Counterion Condensation on Charged Spheres, Cylinders, and Planes. J. Phys. Chem. B 111, 8554–8559 (2007)CrossRefGoogle Scholar
  24. 24.
    Cherstvy, A.G.: Collapse of Highly Charged Polyelectrolytes Triggered by Attractive Dipole-Dipole and Correlation-Induced Electrostatic Interactions. J. Phys. Chem. B 114, 5241–5249 (2010)CrossRefGoogle Scholar
  25. 25.
    Yabuta, T., Yoshizawa, N., Kojima, N.: Cable kink analysis: cable loop stability under tension. Trans. ASME: J. Appl. Mech. 49, 584–588 (1982)ADSCrossRefGoogle Scholar
  26. 26.
    Greenhill, A.G.: On the strength of shafting when exposed both to torsion and to end thrust. In: Proc. Instn Mech. Engrs, pp. 182 (1883)Google Scholar
  27. 27.
    Skolnick, J., Fixman, M.: Electrostatic Persistence Length of a Wormlike Polyelectrolyte. Macromolecules 10, 944–948 (1977)ADSCrossRefGoogle Scholar
  28. 28.
    Odijk, T.J.: Polyelectrolytes near the rod limit. J. Polym. Sci. 15, 477–483 (1977)Google Scholar
  29. 29.
    Andreev, V.A., Victorov, A.I.: Electric potential and bending rigidity of a wormlike particle in electrolyte solution. J. Chem. Phys. 132, 054902 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Mohammad-Rafiee, F., Golestanian, R.: Electrostatic contribution to twist rigidity of DNA. Phys. Rev. E 69, 061919 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    Cherstvy, A.G.: Effect of a Low-Dielectric Interior on DNA Electrostatic Response to Twisting and Bending. J. Phys. Chem. B 111, 12933–12937 (2007)CrossRefGoogle Scholar
  32. 32.
    Yabuta, T.: Submarine cable kink analysis. Bull. JSME 27, 1821–1828 (1984)CrossRefGoogle Scholar
  33. 33.
    Coyne, J.: Analysis of the formation and elimination of loops in twisted cable. IEEE J. Oceanic Eng. 15, 72–83 (1990)CrossRefGoogle Scholar
  34. 34.
    Wiggins, P.A., van der Heijden, T., Moreno-Herrero, F., Spakowitz, A., Phillips, R., Widom, J., Dekker, C., Nelson, P.C.: High flexibility of DNA on short length scales probed by atomic force microscopy. Nature Nanotechnology 1, 137–141 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Kunze, K.K., Netz, R.R.: Complexes of semiflexible polyelectrolytes and charged spheres as models for salt-modulated nucleosomal structures. Phys. Rev. E 66, 011918 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    Guo, Z., Taubes, C.H., Oh, J.E., Maher III, L.J., Mohanty, U.: DNA on a Tube: Electrostatic Contribution to Stiffness. J. Phys. Chem. B 112, 16163–16169 (2008)CrossRefGoogle Scholar
  37. 37.
    Rybenkov, V.V., Cozzarelli, N.R., Vologodskii, A.V.: Probability of DNA knotting and the effective diameter of the DNA double helix. Proc. Natl. Acad. Sci. U.S.A. 90, 5307 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    Forth, S., Deufel, C., Sheinin, M.Y., Daniels, B., Sethna, J.P., Wang, M.D.: Abrupt Buckling Transition Observed during the Plectoneme Formation of Individual DNA Molecules. Phys. Rev. Lett. 100, 148301 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Brutzer, H., Luzzietti, N., Klaue, D., Seidel, R.: Energetics at the DNA Supercoiling Transition. Biophys. J. 98, 1267–1276 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Maffeo, C., Schöpflin, R., Brutzer, H., Stehr, R., Aksimentiev, A., Wedemann, G., Seidel, R.: DNA-DNA Interactions in Tight Supercoils Are Described by a Small Effective Charge Density. Phys. Rev. Lett. 105, 158101 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Daniels, B.C., Forth, S., Sheinin, M.Y., Wang, M. D., Sethna, J.P.: Discontinuities at the DNA supercoiling transition. Phys. Rev. E 80, 040901(R) (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Strick, T.R., Dessinges, M.N., Charvin, G., Dekker, N.H., Allemand, J.F., Bensimon, D., Croquette, V.: Stretching of macromolecules and proteins. Rep. Prog. Phys. 66, 1–45 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    Mosconi, F., Allemand, J.F., Bensimon, D., Croquette, V.: Measurement of the Torque on a Single Stretched and Twisted DNA Using Magnetic Tweezers. Phys. Rev. Lett. 102, 078301 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Neukirch, S.: Extracting DNA Twist Rigidity from Experimental Supercoiling Data. Phys. Rev. Lett. 93, 198107 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    Emanuel, M., et al.: (in press)Google Scholar
  46. 46.
    Starostin, E.L., van der Heijden, G.H.M.: Cascade unlooping of a low-pitch helical spring under tension. J. Mech. Phys. Solids 57, 959–969 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.IFF-2, Forschungszentrum JülichJülichGermany

Personalised recommendations