Journal of Biological Physics

, Volume 38, Issue 1, pp 61–74 | Cite as

New insights into bioprotective effectiveness of disaccharides: an FTIR study of human haemoglobin aqueous solutions exposed to static magnetic fields

  • Salvatore MagazùEmail author
  • Emanuele Calabrò
  • Salvatore Campo
  • Salvatore Interdonato
Original Paper


The aim of this study was the investigation of static magnetic field effects on haemoglobin secondary structure and the bioprotective effectiveness of two disaccharides, sucrose and trehalose. Samples of haemoglobin aqueous solutions, in the absence and in the presence of sucrose and trehalose, were exposed to a uniform magnetic field at 200 mT, which is the exposure limit established by the ICNIRP recommendation for occupational exposure. Spectral analysis by FTIR spectroscopy after 3 and 7 h of exposure revealed a decrease in the amide A vibration band for haemoglobin in bi-distilled water solution. Analogue exposures did not produce any appreciable change of amide A for haemoglobin in sucrose and trehalose solutions. Otherwise, no relative increase of \(\upbeta \)-sheet contents in amide I and II regions was detected for haemoglobin aqueous solutions, leading us to exclude the hypothesis that static magnetic fields can induce the formation of aggregates in the protein. In addition, a decrease in CH3 stretching linkages occurred for haemoglobin in bi-distilled water solution after exposure, which was not observed for haemoglobin in sucrose and trehalose aqueous solutions, providing further evidence of a bioprotective compensatory mechanism of such disaccharides.


Haemoglobin Static magnetic field Electromagnetic field Infrared spectroscopy Disaccharides Trehalose 


  1. 1.
    Belton, P.S., Gil, A.M.: IR and Raman spectroscopic studies of the interaction of trehalose with hen egg white lysozyme. Biopolymers 34, 957–961 (1994)CrossRefGoogle Scholar
  2. 2.
    Crowe, L.M., Reid, D.S., Crowe, J.H.: Is trehalose special for preserving dry biomaterials? Biophys. J. 71, 2087–2093 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    Green, J.L., Angell, C.A.: Phase relation and vitrification in saccharide-water solutions and the trehalose anomaly. J. Phys. Chem. 93, 2880–2882 (1989)CrossRefGoogle Scholar
  4. 4.
    Timasheff, S.N.: Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry 41, 13473–13482 (2002)CrossRefGoogle Scholar
  5. 5.
    Hédoux, A., Ionov, R., Willart, J.F., Lerbret, A., Affouard, F., Guinet, Y., Descamps, M., Prevost, D., Paccou, L., Danéde, F.: Evidence of a two-stage thermal denaturation process in lysozyme: a Raman scattering and differential scanning calorimetry investigation. J. Chem. Phys. 124, 14703 (2006)CrossRefGoogle Scholar
  6. 6.
    Hédoux, A., Willart, J.F., Ionov, R., Affouard, F., Guinet, Y., Paccou, L., Lerbret, A., Descamps, M.: Analysis of sugar bioprotective mechanisms on the thermal denaturation of lysozyme from Raman scattering and differential scanning calorimetry investigations. J. Phys. Chem. B 110, 22886–228893 (2006)CrossRefGoogle Scholar
  7. 7.
    Hédoux, A., Affouard, F., Descamps, M., Guinet, Y., Paccou, L.: Microscopic description of protein thermostabilization mechanisms with disaccharides from Raman spectroscopy investigations. J. Phys.: Condens. Matter 19, 205142 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Hédoux, A., Willart, J.F., Paccou, L., Guinet, Y., Affouard, F., Lerbret, A., Descamps, M.: Thermostabilization mechanism of bovine serum albumin by trehalose. J. Phys. Chem. B 113, 6119–6126 (2009)CrossRefGoogle Scholar
  9. 9.
    Strickley, R.G., Anderson, B.D.: Solid-state stability of human insulin. II. Effect of water on reactive intermediate partitioning in lyophiles from pH 2-5 solutions: stabilization against covalent dimer formation. J. Pharm. Sci. 86, 645–653 (1997)CrossRefGoogle Scholar
  10. 10.
    Kaushik, J.K., Bhat, R.: J. Biol. Chem. 278, 26458 (2003)CrossRefGoogle Scholar
  11. 11.
    Magazù, S., Migliardo, F., Vadalà, M., Mondelli, C.: Correlation between bioprotective effectiveness and dynamic properties of trehalose–water, maltose–water and sucrose–water mixtures. Carbohydr. Res. 340(18), 2796–2801 (2005)CrossRefGoogle Scholar
  12. 12.
    Crowe, J.H., Carpenter, J.F., Crowe, L.M.: The role of vitrification in anhydrobiosis. Annu. Rev. Physiol. 60, 73–103 (1998)CrossRefGoogle Scholar
  13. 13.
    Donnamaria, M.C., Howard, E.I., Grigera, J.R.: Interaction of water with α,α-trehalose in solution: molecular dynamics simulation approach. J. Chem. Soc. Faraday Trans. 90, 2731–2735 (1994)CrossRefGoogle Scholar
  14. 14.
    Magazù, S., Migliardo, F., Ramirez-Cuesta, A.J.: Inelastic neutron scattering study on bioprotectant systems. J. R. Soc. Interf. 2(5), 527–532 (2005)CrossRefGoogle Scholar
  15. 15.
    Magazù, S., Maisano, G., Migliardo, P., Villari, V.: Experimental simulation of macromolecules in trehalose aqueous solutions: a photon correlation spectroscopy study. J. Chem. Phys. 111(19), 9086–9092 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Affouard, F., Bordat, P., Descamps, M., Lerbret, A., Magazù, S., Migliardo, F., Ramirez-Cuesta, A.J., Telling, M.F.T.: A combined neutron scattering and simulation study on bioprotectant systems. Chem. Phys. 317(2–3), 258–266 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Magazù, S., Migliardo, F., Telling, M.T.F.: α,α-trehalose–water solutions. VIII. Study of the diffusive dynamics of water by high-resolution quasi elastic neutron scattering. J. Phys. Chem. B 110(2), 1020–1025 (2006)CrossRefGoogle Scholar
  18. 18.
    Chadwick, P., Lowes, F.: Magnetic fields on British trains. Ann. Occup. Hyg. 42(5), 331–335 (1998)Google Scholar
  19. 19.
    Dietrich, F.M., Jacobs, W.L.: Survey and assessment of electric and magnetic field public exposure in the transportation environment. US Department of Transportation, Federal Railroad Administration 1999 (Report No PB99-130908)Google Scholar
  20. 20.
    Muc, A.M.: Electromagnetic Fields Associated with Transportation Systems. Health Canada, Toronto (2001)Google Scholar
  21. 21.
    NIOSH (National Institute for Occupational Safety and Health—National Institute of Environmental Health Sciences, US Department of Energy): Questions and Answers—EMF in the Work-Place. Electric and Magnetic Fields Associated with the Use of Electric Power. National Institute of Environmental Health Sciences, Washinton, DC (1996)Google Scholar
  22. 22.
    WHO (World Health Organization): Framework for Developing Health-Based EMF Standards. World Health Organization, Geneva (2006)Google Scholar
  23. 23.
    International Commission on Non-Ionizing Radiation Protection (ICNIRP): Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 74, 494–522 (1998)Google Scholar
  24. 24.
    Jung, C.: Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy. J. Mol. Recognit. 13, 325–351 (2000)CrossRefGoogle Scholar
  25. 25.
    Byler, D.M., Susi, H.: Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymer 25, 469-487 (1986)CrossRefGoogle Scholar
  26. 26.
    Surewicz, W.K., Mantsch, H.H.: New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim. Biophys. Acta 952, 115-130 (1988)CrossRefGoogle Scholar
  27. 27.
    Dong, A., Caughey, W.S.: Infrared methods for study of hemoglobin reaction and structures. Methods Enzymol. 232, 139-175 (1994)CrossRefGoogle Scholar
  28. 28.
    Zamfirescu, M., Rusu, I., Sajin, G., Sajin, M., Kovacs, E.: Efecte biologice ale radiaţiilor electromagnetice de radiofrecvenţă şi microunde, Editura Medicală, Bucureşti (2000)Google Scholar
  29. 29.
    Tsui, S.L., Lee, A.K., Lui, S.K., Poon, R.T., Fan, S.T.: Acute intraoperative hemolysis and hemoglobinuria during radiofrequency ablation of hepatocellular carcinoma. Hepato-Gastroenterol. 50, 526–529 (2003)Google Scholar
  30. 30.
    Kim, Y.A., Elemesov, R.E., Akoev, V.R., Abdrasilov, B.S.: Study of erythrocyte hemolysis on exposure to strong 2.45 GHz electromagnetic radiation. Biophysics 50(1), S44–S50 (2005)Google Scholar
  31. 31.
    Smith, B.M., Franzen, S.: Single-pass attenuated total reflection Fourier transform infrared spectroscopy for the analysis of proteins in H2O solution. Anal. Chem. 74, 4076–4080 (2002)CrossRefGoogle Scholar
  32. 32.
    Susi, H., Byler, D.M.: Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol. 130, 290-311 (1986)CrossRefGoogle Scholar
  33. 33.
    Yang, W.-J., Griffiths, P.R., Byler, D.M., Susi, H.: Protein conformation by infrared spectroscopy: resolution enhancement by Fourier self deconvolution. Appl. Spectrosc. 39(2), 282–287 (1985)ADSCrossRefGoogle Scholar
  34. 34.
    Krimm, S., Bandekar, J.: Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem. 38, 181-364 (1986)CrossRefGoogle Scholar
  35. 35.
    Kato, K., Matsui, T., Tanaka, S.: Quantitative estimation of alpha-helix coil content in bovine serum albumin by Fourier transform-infrared spectroscopy. Appl. Spectrosc. 41(5), 861–865 (1987)ADSCrossRefGoogle Scholar
  36. 36.
    Sarver, R.W., Krueger, W.C.: Protein secondary structure from Fourier transform infrared spectroscopy: a data base analysis. Anal. Biochem. 194, 89-100 (1991)CrossRefGoogle Scholar
  37. 37.
    Ismail, A.A., Mantch, H.H., Wong, P.T.T.: Aggregation of chymotrypsinogen: portrait by infrared spectroscopy. Biochim. Biophys. Acta 1121, 183–188 (1992)CrossRefGoogle Scholar
  38. 38.
    Lefevre, T., Subirade, M.: Molecular differences in the formation and structure of fine-stranded and particulate \(\upbeta \)-lactglobulin gels. Biopolymers 54, 578–586 (2000)CrossRefGoogle Scholar
  39. 39.
    Magazù, S., Calabrò, E., Campo, S.: FTIR spectroscopy studies on the bioprotective effectiveness of trehalose on human haemoglobin aqueous solutions under 50 Hz electromagnetic field exposure. J. Phys. Chem. B 114, 12144–12149 (2010)CrossRefGoogle Scholar
  40. 40.
    West, W. (ed.): Chemical Applications of Spectroscopy. Interscience Publishers, Inc., New York (1956)Google Scholar
  41. 41.
    McQuade, D.T., McKay, S.L., Powell, D.R., Gellman, S.H.J.: Am. Chem. Soc. 119, 8528 (1997)CrossRefGoogle Scholar
  42. 42.
    Lee, S.H., Mirkin, N.G., Krimm, S.: Biopolymers 49, 195 (1999)CrossRefGoogle Scholar
  43. 43.
    Chen, J., Park, J., Hochstrasser, R.M.: J. Phys. Chem. A 107, 10660 (2003)CrossRefGoogle Scholar
  44. 44.
    Park, J., Hochstrasser, R.M.: Chem. Phys. 323, 78 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    Miyazawa, T.: The characteristic band of secondary amides at 3100 cm_1. J. Mol. Spectrosc. 4, 168–172 (1960)ADSCrossRefGoogle Scholar
  46. 46.
    Krimm, S., Dwivedi, A.M.: Vibrational analysis of peptides, polypeptides and proteins. XII-Fermi resonance analysis of the unperturbed ND stretching fundamental in polypeptides. J. Raman Spectrosc. 12, 133–137 (1982)ADSCrossRefGoogle Scholar
  47. 47.
    Stuart, B.: Biological Applications of Infrared Spectroscopy. Analytical Chemistry of Open Learning. Wiley, Chichester 115 (1997)Google Scholar
  48. 48.
    Dumas, P., Miller, L.: The use of synchrotron infrared microspectroscopy in biological and biomedical investigations. Vib. Spec. 32, 3–21 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Salvatore Magazù
    • 1
    Email author
  • Emanuele Calabrò
    • 1
  • Salvatore Campo
    • 2
  • Salvatore Interdonato
    • 1
  1. 1.Department of PhysicsUniversity of MessinaMessinaItaly
  2. 2.Department of Biochemical, Physiological and Nutritional SciencesUniversity of MessinaMessinaItaly

Personalised recommendations