Journal of Biological Physics

, Volume 37, Issue 1, pp 91–106 | Cite as

Global stability and persistence in LG–Holling type II diseased predator ecosystems

  • Sahabuddin Sarwardi
  • Mainul Haque
  • Ezio VenturinoEmail author
Original Paper


A Leslie–Gower–Holling type II model is modified to introduce a contagious disease in the predator population, assuming that disease cannot propagate to the prey. All the system’s equilibria are determined and the behaviour of the system near them is investigated. The main mathematical issues are global stability and bifurcations for some of the equilibria, together with sufficient conditions for persistence of the ecosystem. Counterintuitive results on the role played by intraspecific competition are highlighted.


Ecoepidemiology Population models Epidemic models Boundedness Persistence Local stability Global stability Lyapunov function Hopf bifurcation 


  1. 1.
    Malchow, H., Petrovskii, S., Venturino, E.: Spatiotemporal Patterns in Ecology and Epidemiology, CRC, Boca Raton (2008)zbMATHGoogle Scholar
  2. 2.
    Hadeler, K.P., Freedman, H.I.: Predator–prey populations with parasitic infection. J. Math. Biol. 27, 609–631 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Freedman, H.I.: A model of predator–prey dynamics modified by the action of a parasite. Math. Biosci. 99, 143–155 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Beltrami, E., Carroll, T.O.: Modelling the role of viral disease in recurrent phytoplankton blooms. J. Math. Biol. 32, 857–863 (1994)zbMATHCrossRefGoogle Scholar
  5. 5.
    Venturino, E.: The influence of diseases on Lotka-Volterra systems. Rocky Mt. J. Math. 24, 381–402 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Venturino, E.: Epidemics in predator–prey models: disease among the prey. In: Arino, O., Axelrod, D., Kimmel, M., Langlais, M. (eds.) Mathematical Population Dynamics: Analysis of Heterogeneity. Theory of Epidemics, vol. 1, , pp. 381–393. Wuertz, Winnipeg (1995)Google Scholar
  7. 7.
    Venturino, E.: Epidemics in predator–prey models: disease in the predators. IMA J. Math. Appl. Med. Biol. 19, 185–205 (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Venturino, E.: The effects of diseases on competing species. Math. Biosci. 174, 111–131 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Arino, O., Abdllaoui, A.E., Mikram, J., Chattopadhyay, J.: Infection in prey population may act as biological control in ratio-dependent predator–prey models. Nonlinearity 17, 1101–1116 (2004)zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Chattopadhyay, J., Arino, O.: A predator–prey model with disease in the prey. Nonlinear Anal. 36, 747–766 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Haque, M., Venturino, E.: Increase of the prey may decrease the healthy predator population in presence of a disease in the predator. HERMIS 7, 39–60 (2006)Google Scholar
  12. 12.
    Haque, M., Venturino, E.: The role of transmissible diseases in the Holling–Tanner predator–prey model. Theor. Popul. Biol. 70, 273–288 (2006)zbMATHCrossRefGoogle Scholar
  13. 13.
    Haque, M., Venturino, E.: An ecoepidemiological model with disease in the predator; the ratio-dependent case. Math. Methods Appl. Sci. 30, 1791–1809 (2007)zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Aziz-Alaoui, M.A.: Study of a Leslie–Gower–type tritrophic population. Chaos Solitons Fractals 14(8), 1275–1293 (2002)zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Letellier, C., Aziz-Alaoui, M.A.: Analysis of the dynamics of a realistic ecological model. Chaos Solitons Fractals 13(1), 95–107 (2002)zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Letellier, C., Aguirre, L., Maquet, J., Aziz-Alaoui, M.A.: Should all the species of a food chain be counted to investigate the global dynamics? Chaos Solitons Fractals 13(5), 1099–1113 (2002)zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Upadhyay, R.K., Rai, V.: Why chaos is rarely observed in natural populations. Chaos Solitons Fractals 8(12), 1933–1939 (1997)CrossRefADSGoogle Scholar
  18. 18.
    Korobeinikov, A.: A Lyapunov function for Leslie–Gower prey–predator models. Appl. Math. Lett. 14(6), 697–699 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Gard, T.C., Hallam, T.G.: Persistence in food web-1, Lotka–Volterra food chains. Bull. Math. Biol. 41, 877–891 (1979)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Liu, R., Duvvuri, V.R.S.K., Wu, J.: Spread pattern formation of H5N1-avian influenza and its implications for control strategies. Math. Model. Nat. Phenom. 3(7), 161–179 (2008)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sahabuddin Sarwardi
    • 1
  • Mainul Haque
    • 2
  • Ezio Venturino
    • 3
    Email author
  1. 1.Department of MathematicsAliah UniversityKolkataIndia
  2. 2.School of Mathematical ScienceUniversity of NottinghamNottinghamUK
  3. 3.Dipartimento di Matematica “Giuseppe Peano”Università di TorinoTurinItaly

Personalised recommendations