Journal of Biological Physics

, Volume 36, Issue 2, pp 135–143 | Cite as

An optical-manipulation technique for cells in physiological flows

  • Hu Zhang
  • Neng H. Chen
  • Alicia El Haj
  • Kuo-Kang LiuEmail author
Short Note


We have developed a technique to manipulate human red blood cells (RBCs) in hydrodynamic flows. This method applies optical tweezers to trap and move microbead-attached RBCs in a liquid medium at various speeds, while it significantly minimizes laser heating and photon-induced stress for normal operation with laser-trapped cells. Computational fluid dynamics is applied to simulate flow-induced shear stress over the cell membrane and to correlate quantitatively the forces with the cell deformations. RBCs can be manipulated under physiological conditions by this approach, which may open an avenue to design principles for the next generation of cell sorting and delivery.


Optical tweezers Cell–flow interaction Red blood cell Cell sorting Flow–structure interaction 



The work is partly supported by the project funding (BB/D014786/1), which is co-funded by BBSCR and EPSRC (Life Science Interface Programme).


  1. 1.
    Titushkin, I., Cho, M.: Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers. Biophys. J. 90, 2582–2591 (2006)CrossRefADSGoogle Scholar
  2. 2.
    Zhang, H., Liu, K.K.: Optical tweezers for single cells. J. R. Soc. Interface 5, 671–690 (2008)CrossRefGoogle Scholar
  3. 3.
    Hormeno, S., Arias-Gonzalez, J.R.: Exploring mechanchemical processes in the cell with optical tweezers. Biol. Cell 98, 679–695 (2006)CrossRefGoogle Scholar
  4. 4.
    Li, C., Liu, Y.P., Liu, K.K., Lai, A.C.K.: The deformation of an erythrocyte under the radiation pressure by optical stretch. J. Biomech. Eng. ASME 128, 830–836 (2006)CrossRefGoogle Scholar
  5. 5.
    Grier, D.G.A.: Revolution in optical manipulation. Nature 424, 810–816 (2003)CrossRefADSGoogle Scholar
  6. 6.
    Liu, Y., Cheng, D.K., Sonek, J.G., Berns, M.W., Chapman, C.F., Tromberg, B.J.: Evidence for localized cell heating induced by infrared optical tweezers. Biophys. J. 68, 2137–1244 (1995)Google Scholar
  7. 7.
    Liu, Y., Sonek, G.J., Berns, M.W., Tromberg, B.J.: Physiological monitoring of optically trapped cells: Assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. Biophys. J. 71, 2158–2167 (1996)CrossRefGoogle Scholar
  8. 8.
    Neuman, K.C., Block, S.M.: Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004)CrossRefADSGoogle Scholar
  9. 9.
    Sheetz, M.P.: Laser Tweezers in Cell Biology. Academic Press, New York (1998)Google Scholar
  10. 10.
    Svoboda, K., Block, S.M.: Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994)CrossRefGoogle Scholar
  11. 11.
    Hénon, S., Lenormand, G., Richert, A., Gallet, F.: A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 76, 1145–1151 (1999)CrossRefGoogle Scholar
  12. 12.
    Lim, C.T., Dao, M., Suresh, S., Sow, C.H., Chew, K.T.: Large deformation of living cells using laser traps. Acta Mater. 52, 1837–1845 (2004)CrossRefGoogle Scholar
  13. 13.
    Parker, K.H., Winlove, C.P.: The deformation of spherical vesicles with permeable, constant-area membranes: application to red blood cell. Biophys. J. 77, 3096–3107 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Hu Zhang
    • 1
  • Neng H. Chen
    • 2
  • Alicia El Haj
    • 1
  • Kuo-Kang Liu
    • 3
    Email author
  1. 1.Institute of Science and Technology in MedicineKeele UniversityStoke-on-TrentUK
  2. 2.Department of StatisticsNational Cheng Kung UniversityTainanRepublic of China
  3. 3.School of EngineeringThe University of WarwickCoventryUK

Personalised recommendations