Journal of Biological Physics

, Volume 35, Issue 3, pp 279–295 | Cite as

Pulsed-laser creation and characterization of giant plasma membrane vesicles from cells

  • Christopher V. Kelly
  • Mary-Margaret T. Kober
  • Päivö Kinnunen
  • David A. Reis
  • Bradford G. Orr
  • Mark M. Banaszak Holl
Original Paper

Abstract

Femtosecond-pulsed laser irradiation was found to initiate giant plasma membrane vesicle (GPMV) formation on individual cells. Laser-induced GPMV formation resulted from intracellular cavitation and did not require the addition of chemical stressors to the cellular environment. The viscosity, structure, and contents of laser-induced GPMVs were measured with fluorescence microscopy and single-particle tracking. These GPMVs exhibit the following properties: (1) GPMVs grow fastest immediately after laser irradiation; (2) GPMVs contain barriers to free diffusion of incorporated fluorescent beads; (3) materials from both the cytoplasm and surrounding media flow into the growing GPMVs; (4) the GPMVs are surrounded by phospholipids, including phosphatidylserine; (5) F-actin is incorporated into the vesicles; and (6) caspase activity is not essential for GPMV formation. The effective viscosity of 65 nm polystyrene nanoparticles within GPMVs ranged from 32 to 434 cP. The nanoparticle diffusion was commonly affected by relatively large, macromolecular structures within the bleb.

Keywords

Giant plasma membrane vesicle (GPMV) Single-particle tracking Membrane permeability Micro-bubble Viscosity Bleb Femtosecond laser pulse 

Supplementary material

10867_2009_9167_MOESM1_ESM.doc (870 kb)
(DOC 870 kb)

References

  1. 1.
    Cunningham, C.C.: Actin polymerization and intracellular solvent flow in cell-surface blebbing. J. Cell Biol. 129, 1589–1599 (1995). doi:10.1083/jcb.129.6.1589 CrossRefGoogle Scholar
  2. 2.
    Hagmann, J., Burger, M.M., Dagan, D.: Regulation of plasma membrane blebbing by the cytoskeleton. J. Cell. Biochem. 73, 488–499 (1999). doi:10.1002/(SICI)1097-4644(19990615)73:4<488::AID-JCB7>3.0.CO;2-P CrossRefGoogle Scholar
  3. 3.
    Keller, H., Rentsch, P., Hagmann, J.: Differences in cortical actin structure and dynamics document that different types of blebs are formed by distinct mechanisms. Exp. Cell Res. 277, 161–172 (2002). doi:10.1006/excr.2002.5552 CrossRefGoogle Scholar
  4. 4.
    Paluch, E., van der Gucht, J., Sykes, C.: Cracking up: symmetry breaking in cellular systems. J. Cell Biol. 175, 687–692 (2006). doi:10.1083/jcb.200607159 CrossRefGoogle Scholar
  5. 5.
    Charras, G.T., Yarrow, J.C., Horton, M.A., Mahadevan, L., Mitchison, T.J.: Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435, 365–369 (2005). doi:10.1038/nature03550 CrossRefADSGoogle Scholar
  6. 6.
    Rentsch, P.S., Keller, H.: Suction pressure can induce uncoupling of the plasma membrane from cortical actin. Eur. J. Cell Biol. 79, 975–981 (2000). doi:10.1078/0171-9335-00124 CrossRefGoogle Scholar
  7. 7.
    Sheetz, M.P., Sable, J.E., Dobereiner, H.G.: Continuous membrane–cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu. Rev. Biophys. Biomol. Struct. 35, 417–434 (2006). doi:10.1146/annurev.biophys.35.040405.102017 CrossRefGoogle Scholar
  8. 8.
    Boulbitch, A., Simson, R., Simson, D.A., Merkel, R., Hackl, W., Barmann, M., Sackmann, E.: Shape instability of a biomembrane driven by a local softening of the underlying actin cortex. Phys. Rev. E 62, 3974–3985 (2000). doi:10.1103/PhysRevE.62.3974 CrossRefADSGoogle Scholar
  9. 9.
    Charras, G.T.: A short history of blebbing. Paper presented at the 6th Abercrombie symposium on cell motility, Oxford, England (2007)Google Scholar
  10. 10.
    Rafelski, S.M., Theriot, J.A.: Crawling toward a unified model of cell motility: spatial and temporal regulation of actin dynamics. Annu. Rev. Biochem. 73, 209–239 (2004). doi:10.1146/annurev.biochem.73.011303.073844 CrossRefGoogle Scholar
  11. 11.
    Charras, G., Paluch, E.: Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 9, 730–736 (2008). doi:10.1038/nrm2453 CrossRefGoogle Scholar
  12. 12.
    Jungbluth, A., Vonarnim, V., Biegelmann, E., Humbel, B., Schweiger, A., Gerisch, G.: Strong increase in the tyrosine phosphorylation of actin upon inhibition of oxidative-phosphorylation—correlation with reversible rearrangements in the actin skeleton of dictyostelium cells. J. Cell Sci. 107, 117–125 (1994)Google Scholar
  13. 13.
    Mills, J.C., Stone, N.L., Erhardt, J., Pittman, R.N.: Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J. Cell Biol. 140, 627–636 (1998). doi:10.1083/jcb.140.3.627 CrossRefGoogle Scholar
  14. 14.
    Charras, G.T., Hu, C.K., Coughlin, M., Mitchison, T.J.: Reassembly of contractile actin cortex in cell blebs. J. Cell Biol. 175, 477–490 (2006). doi:10.1083/jcb.200602085 CrossRefGoogle Scholar
  15. 15.
    Ilegems, E., Pick, H.M., Deluz, C., Kellenberger, S., Vogel, H.: Noninvasive imaging of 5-HT3 receptor trafficking in live cells—from biosynthesis to endocytosis. J. Biol. Chem. 279, 53346–53352 (2004). doi:10.1074/jbc.M407467200 CrossRefGoogle Scholar
  16. 16.
    Sengupta, P., Baird, B., Holowka, D.: Lipid rafts, fluid/fluid phase separation, and their relevance to plasma membrane structure and function. Semin. Cell Dev. Biol. 18, 583–590 (2007). doi:10.1016/j.semcdb.2007.07.010 CrossRefGoogle Scholar
  17. 17.
    Barros, L.F., Kanaseki, T., Sabirov, R., Morishima, S., Castro, J., Bittner, C.X., Maeno, E., Ando-Akatsuka, Y., Okada, Y.: Apoptotic and necrotic blebs in epithelial cells display similar neck diameters but different kinase dependency. Cell Death Differ. 10, 687–697 (2003). doi:10.1038/sj.cdd.4401236 CrossRefGoogle Scholar
  18. 18.
    Gores, G.J., Herman, B., Lemasters, J.J.: Plasma-membrane bleb formation and rupture—a common feature of hepatocellular injury. Hepatology 11, 690–698 (1990). doi:10.1002/hep.1840110425 CrossRefGoogle Scholar
  19. 19.
    Huot, J., Houle, F., Rousseau, S., Deschesnes, R.G., Shah, G.M., Landry, J.: SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J. Cell Biol. 143, 1361–1373 (1998). doi:10.1083/jcb.143.5.1361 CrossRefGoogle Scholar
  20. 20.
    Sebbagh, M., Renvoize, C., Hamelin, J., Riche, N., Bertoglio, J., Breard, J.: Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat. Cell Biol. 3, 346–352 (2001). doi:10.1038/35070019 CrossRefGoogle Scholar
  21. 21.
    Yanai, M., Kenyon, C.M., Butler, J.P., Macklem, P.T., Kelly, S.M.: Intracellular pressure is a motive force for cell motion in Amoeba proteus. Cell Motil. Cytoskelet. 33, 22–29 (1996). doi:10.1002/(SICI)1097-0169(1996)33:1<22::AID-CM3>3.0.CO;2-K CrossRefGoogle Scholar
  22. 22.
    Malorni, W., Straface, E., Donelli, G., Giacomoni, P.U.: UV-induced cytoskeletal damage, surface blebbing and apoptosis are hindered by alpha-tocopherol in cultured human keratinocytes. Eur. J. Dermatol. 6, 414–420 (1996)Google Scholar
  23. 23.
    Veatch, S.L., Cicuta, P., Sengupta, P., Honerkamp-Smith, A., Holowka, D., Baird, B.: Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3, 287–293 (2008). doi:10.1021/cb800012x CrossRefGoogle Scholar
  24. 24.
    Baumgart, T., Hammond, A.T., Sengupta, P., Hess, S.T., Holowka, D.A., Baird, B.A., Webb, W.W.: Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl. Acad. Sci. U. S. A. 104, 3165–3170 (2007). doi:10.1073/pnas.0611357104 CrossRefADSGoogle Scholar
  25. 25.
    Holowka, D., Baird, B.: Structural studies on the membrane-bound immunoglobulin E-receptor complex. 1. Characterization of large plasma-membrane vesicles from rat basophilic leukemia-cells and insertion of amphipathic fluorescent-probes. Biochemistry 22, 3466–3474 (1983). doi:10.1021/bi00283a025 CrossRefGoogle Scholar
  26. 26.
    Tank, D.W., Wu, E.S., Webb, W.W.: Enhanced molecular diffusibility in muscle membrane blebs—release of lateral constraints. J. Cell Biol. 92, 207–212 (1982). doi:10.1083/jcb.92.1.207 CrossRefGoogle Scholar
  27. 27.
    Baumann, N.A., Vidugiriene, J., Machamer, C.E., Menon, A.K.: Cell surface display and intracellular trafficking of free glycosylphosphatidylinositols in mammalian cells. J. Biol. Chem. 275, 7378–7389 (2000). doi:10.1074/jbc.275.10.7378 CrossRefGoogle Scholar
  28. 28.
    Bauer, B., Davidson, M., Orwar, O.: Proteomic analysis of plasma membrane vesicles. Angew. Chem., Int. Ed. 48, 1656–1659 (2009). doi:10.1002/anie.200803898 CrossRefGoogle Scholar
  29. 29.
    Vogel, A., Noack, J., Huttman, G., Paltauf, G.: Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 81, 1015–1047 (2005). doi:10.1007/s00340-005-2036-6 CrossRefADSGoogle Scholar
  30. 30.
    Janicke, R.U., Sprengart, M.L., Wati, M.R., Porter, A.G.: Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273, 9357–9360 (1998). doi:10.1074/jbc.273.16.9357 CrossRefGoogle Scholar
  31. 31.
    Janicke, R.U., Ng, P., Sprengart, M.L., Porter, A.G.: Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J. Biol. Chem. 273, 15540–15545 (1998). doi:10.1074/jbc.273.25.15540 CrossRefGoogle Scholar
  32. 32.
    Tadepalli, N.R., Alexander, D., Doerr, D., Li, J., Zhang, H.: Femtosecond pulse stretching in microscope objectives used for micro/nanomachining. J. Laser Appl. 17, 270–272 (2005). doi:10.2351/1.2080287 CrossRefGoogle Scholar
  33. 33.
    Reece, J.C., Vardaxis, N.J., Marshall, J.A., Crowe, S.M., Cameron, P.U.: Uptake of HIV and latex particles by fresh and cultured dendritic cells and monocytes. Immunol. Cell Biol. 79, 255–263 (2001). doi:10.1046/j.1440-1711.2001.01011.x CrossRefGoogle Scholar
  34. 34.
    Zohdy, M.J., Tse, C., Ye, J.Y., O’Donnell, M.: Optical and acoustic detection of laser-generated microbubbles in single cells. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 117–125 (2006). doi:10.1109/TUFFC.2006.1588397 CrossRefGoogle Scholar
  35. 35.
    Vogel, A., Linz, N., Freidank, S., Paltauf, G.: Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery. Phys. Rev. Lett. 100, 4 (2008)Google Scholar
  36. 36.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland, New York, NY (2002)Google Scholar
  37. 37.
    Vogel, G., Thilo, L., Schwarz, H., Steinhart, R.: Mechanism of phagocytosis in dictyostelium-discoideum—phagocytosis is mediated by different recognition sites as disclosed by mutants with altered phagocytotic properties. J. Cell Biol. 86, 456–465 (1980). doi:10.1083/jcb.86.2.456 CrossRefGoogle Scholar
  38. 38.
    Dai, J.W., Ting-Beall, H.P., Hochmuth, R.M., Sheetz, M.P., Titus, M.A.: Myosin I contributes to the generation of resting cortical tension. Biophys. J. 77, 1168–1176 (1999). doi:10.1016/S0006-3495(99)76968-7 CrossRefGoogle Scholar
  39. 39.
    Paluch, E., Piel, M., Prost, J., Bornens, M., Sykes, C.: Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments. Biophys. J. 89, 724–733 (2005). doi:10.1529/biophysj.105.060590 CrossRefGoogle Scholar
  40. 40.
    Banks, D.S., Fradin, C.: Anomalous diffusion of proteins due to molecular crowding. Biophys. J. 89, 2960–2971 (2005). doi:10.1529/biophysj.104.051078 CrossRefADSGoogle Scholar
  41. 41.
    Guigas, G., Kalla, C., Weiss, M.: Probing the nanoscale viscoelasticity of intracellular fluids in living cells. Biophys. J. 93, 316–323 (2007). doi:10.1529/biophysj.106.099267 CrossRefADSGoogle Scholar
  42. 42.
    Luby-Phelps, K., Taylor, D.L., Lanni, F.: Probing the structure of cytoplasm. J. Cell Biol. 102, 2015–2022 (1986). doi:10.1083/jcb.102.6.2015 CrossRefGoogle Scholar
  43. 43.
    Weiss, M., Elsner, M., Kartberg, F., Nilsson, T.: Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 87, 3518–3524 (2004). doi:10.1529/biophysj.104.044263 CrossRefADSGoogle Scholar
  44. 44.
    Mastro, A.M., Keith, A.D.: Diffusion in the aqueous compartment. J. Cell Biol. 99, S180–S187 (1984). doi:10.1083/jcb.99.1.180s CrossRefGoogle Scholar
  45. 45.
    Lynch, I., Dawson, K.A., Linse, S.: Detecting cryptic epitopes created by nanoparticles. Sci. STKE 327, pe14 (2006). doi:10.1126/stke.3272006pe14 Google Scholar
  46. 46.
    Faulstich, H., Zobeley, S., Heintz, D., Drewes, G.: Probing the phalloidin binding-site of actin. FEBS Lett. 318, 218–222 (1993). doi:10.1016/0014-5793(93)80515-V CrossRefGoogle Scholar
  47. 47.
    Miyoshi, H., Umeshita, K., Sakon, M., Imajoh-Ohmi, S., Fujitani, K., Gotoh, M., Oiki, E., Kambayashi, J., Monden, M.: Calpain activation in plasma membrane bleb formation during tert-butyl hydroperoxide-induced rat hepatocyte injury. Gastroenterology 110, 1897–1904 (1996). doi:10.1053/gast.1996.v110.pm8964416 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Christopher V. Kelly
    • 1
    • 2
    • 3
    • 4
  • Mary-Margaret T. Kober
    • 4
    • 5
  • Päivö Kinnunen
    • 4
    • 6
  • David A. Reis
    • 1
    • 6
  • Bradford G. Orr
    • 1
    • 4
    • 6
    • 7
  • Mark M. Banaszak Holl
    • 1
    • 2
    • 3
    • 4
    • 5
    • 8
  1. 1.Applied Physics ProgramUniversity of MichiganAnn ArborUSA
  2. 2.BiophysicsUniversity of MichiganAnn ArborUSA
  3. 3.Graham Environmental Sustainability InstituteUniversity of MichiganAnn ArborUSA
  4. 4.Michigan Nanotechnology Institute for Medicine and Biological SciencesUniversity of MichiganAnn ArborUSA
  5. 5.Department of ChemistryUniversity of MichiganAnn ArborUSA
  6. 6.Department of PhysicsUniversity of MichiganAnn ArborUSA
  7. 7.Ann ArborUSA
  8. 8.Ann ArborUSA

Personalised recommendations