Journal of Biological Physics

, Volume 35, Issue 3, pp 255–264 | Cite as

Evaluation of leaf water status by means of permittivity at terahertz frequencies

  • C. Jördens
  • M. Scheller
  • B. Breitenstein
  • D. Selmar
  • M. Koch
Original Paper


We present an electromagnetic model of plant leaves which describes their permittivity at terahertz frequencies. The complex permittivity is investigated as a function of the water content of the leaf. Our measurements on coffee leaves (Coffea arabica L.) demonstrate that the dielectric material parameters can be employed to determine the leaf water status and, therefore, to monitor drought stress in plant leaves. The electromagnetic model consists of an effective medium theory, which is implemented by a third order extension of the Landau, Lifshitz, Looyenga model. The influence of scattering becomes important at higher frequencies and is modeled by a Rayleigh roughness factor.


Terahertz time-domain spectroscopy Dielectric mixture Permittivity model Leaf water content Drought stress Coffea arabica 



The authors acknowledge financial support for this research from the BMELV in the framework of the project: “Terahertz-Messung zur In vivo-Analyse des Trockenstresses bei Nutzpflanzen: Optoelektronisches Messwerkzeug zur selektiven Züchtung und Kultivierung.”


  1. 1.
    Bacic, G., Ratkovic, R.: NMR studies of radial exchange and distribution of water in maize roots: the relevance of modelling of exchange kinetics. J. Exp. Bot. 38, 1284–1297 (1987). doi: 10.1093/jxb/38.8.1284 CrossRefGoogle Scholar
  2. 2.
    El-Rayes, M.A., Ulaby, F.T.: Microwave dielectric spectrum of vegetation - i: experimental observations. IEEE Trans. Geosci. Remote Sens. GE-25(5), 541–549 (1987). doi: 10.1109/TGRS.1987.289832 CrossRefADSGoogle Scholar
  3. 3.
    Ulaby, F.T., El-Rayes, M.A.: Microwave dielectric spectrum of vegetation - ii: dual-dispersion model. IEEE Trans. Geosci. Remote Sens. GE-25(5), 550–557 (1987). doi: 10.1109/TGRS.1987.289833 CrossRefADSGoogle Scholar
  4. 4.
    Mätzler, C.: Microwave (1–100 GHz) dielectric model of leaves. IEEE Trans. Geosci. Remote Sens. 32(4), 947–949 (1994). doi: 10.1109/36.298024 CrossRefADSGoogle Scholar
  5. 5.
    Ulaby, F.T., Jedlicka, R.P.: Microwave dielectric properties of plant materials. IEEE Trans. Geosci. Remote Sens. GE-22(4), 406–415 (1984). doi: 10.1109/TGRS.1984.350644 CrossRefADSGoogle Scholar
  6. 6.
    Tucker, C.J.: Remote sensing of leaf water content in the near infrared. Remote Sens. Environ. 10(1), 23–32 (1980). doi: 10.1016/0034-4257(80)90096-6 CrossRefGoogle Scholar
  7. 7.
    Hunt, E.R., Jr., Rock, B.N., Nobel, P.S.: Measurement of leaf relative water content by infrared reflectance. Remote Sens. Environ. 22(3), 429–435 (1987). doi: 10.1016/0034-4257(87)90094-0 CrossRefGoogle Scholar
  8. 8.
    Hunt, E.R., Jr., Rock, B.N.: Detection of changes in leaf water content using near- and middle-infrared reflectances. Remote Sens. Environ. 30(1), 43–54 (1989). doi: 10.1016/0034-4257(89)90046-1 CrossRefGoogle Scholar
  9. 9.
    Eitel, J.U.H., Gessler, P.E., Smith, A.M.S., Robberecht, R.: Suitability of existing and novel spectral indices to remotely detect water stress in populus spp. For. Ecol. Manag. 1–3(229), 170–182 (2006). doi: 10.1016/j.foreco.2006.03.027 CrossRefGoogle Scholar
  10. 10.
    Seelig, H., Adams, W.W., Hoehn, A., Stodieck, L.S., Klaus, D.M., Emery, W.J.: Extraneous variables and their influence on reflectance-based measurements of leaf water content. Irrig. Sci. 26(5), 407–414 (2008). doi: 10.1007/s00271-008-0105-4 CrossRefGoogle Scholar
  11. 11.
    Mittleman, D.M., Jacobson, R.H., Nuss, M.C.: T-ray imaging. IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996). doi: 10.1109/2944.571768 CrossRefGoogle Scholar
  12. 12.
    Hadjiloucas, S., Karatzas, L.S., Bowen, J.W.: Measurements of leaf water content using terahertz radiation. IEEE Trans. Microwave Theor. Tech. 47(2), 142–149 (1999). doi: 10.1109/22.744288 CrossRefGoogle Scholar
  13. 13.
    Grischkowsky, D., Keiding, S., van Exter, M., Fattinger, Ch.: Far-infrared time-domain spectroscopy with THz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 7(10), 2006–2015 (1990). doi: 10.1364/JOSAB.7.002006 CrossRefADSGoogle Scholar
  14. 14.
    Vieweg, N., Krumbholz, N., Hasek, T., Wilk, R., Bartels, V., Keseberg, C., Pethukhov, V., Mikulics, M., Wetenkamp, L., Koch, M.: Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes. In: Paper Presented at SPIE European Symposium on Optical Metrology, vol. 6616, pp. 66163M1-8. Munich (2007)Google Scholar
  15. 15.
    Looyenga, H.: Dielectric constants of heterogeneous mixtures. Physica 31(3), 401–406 (1965). doi: 10.1016/0031-8914(65)90045-5 CrossRefADSGoogle Scholar
  16. 16.
    Liebe, H.J., Hufford, G.A., Manabe, T.: Model for the complex permittivity of water at frequencies below 1 THz. Int. J. Infrared Millim. Waves 12(7), 659–675 (1991). doi: 10.1007/BF01008897 CrossRefADSGoogle Scholar
  17. 17.
    Beckmann, P., Spizzichino, A.: The Scattering of Electromagnetic Waves from Rough Surfaces. Artech House, Norwood (1987)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • C. Jördens
    • 1
  • M. Scheller
    • 1
  • B. Breitenstein
    • 2
  • D. Selmar
    • 2
  • M. Koch
    • 1
  1. 1.Institut für HochfrequenztechnikTU BraunschweigBraunschweigGermany
  2. 2.Institut für PflanzenbiologieTU BraunschweigBraunschweigGermany

Personalised recommendations