A critical assessment of the information processing capabilities of neuronal microtubules using coherent excitations

  • Travis John Adrian Craddock
  • Jack A. TuszynskiEmail author
Original Paper


Evidence for signaling, communication, and conductivity in microtubules (MTs) has been shown through both direct and indirect means, and theoretical models predict their potential use in both classical and quantum information processing in neurons. The notion of quantum information processing within neurons has been implicated in the phenomena of consciousness, although controversies have arisen in regards to adverse physiological temperature effects on these capabilities. To investigate the possibility of quantum processes in relation to information processing in MTs, a biophysical MT model is used based on the electrostatic interior of the tubulin protein. The interior is taken to constitute a double-well potential structure within which a mobile electron is considered capable of occupying at least two distinct quantum states. These excitonic states together with MT lattice vibrations determine the state space of individual tubulin dimers within the MT lattice. Tubulin dimers are taken as quantum well structures containing an electron that can exist in either its ground state or first excited state. Following previous models involving the mechanisms of exciton energy propagation, we estimate the strength of exciton and phonon interactions and their effect on the formation and dynamics of coherent exciton domains within MTs. Also, estimates of energy and timescales for excitons, phonons, their interactions, and thermal effects are presented. Our conclusions cast doubt on the possibility of sufficiently long-lived coherent exciton/phonon structures existing at physiological temperatures in the absence of thermal isolation mechanisms. These results are discussed in comparison with previous models based on quantum effects in non-polar hydrophobic regions, which have yet to be disproved.


Microtubules Information processing Coherent excitations Quantum coherence Phonons Excitons 



This research was supported by grants from NSERC, Alberta Cancer Foundation and the Allard Foundation.


  1. 1.
    Naundorf, B., Wolf, F., Volgushev, M.: Unique features of action potential initiation in cortical neurons. Nature 440, 1060 (2006). doi: 10.1038/nature04610 CrossRefADSGoogle Scholar
  2. 2.
    Penrose, R.: Shadows of the Mind. Oxford University Press, New York (1994)Google Scholar
  3. 3.
    Hameroff, S.: Quantum computation in brain microtubules? The Penrose–Hameroff ‘Orch-OR’ model of consciousness (and discussion). Philos. Trans. R. Soc. Lond. A 365, 1869–1896 (1998). doi: 10.1098/rsta.1998.0254 CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Dustin, P.: MTs. Springer, New York (1978)Google Scholar
  5. 5.
    Roberts, K., Hyams, J.S.: Microtubules. Academic, New York (1979)Google Scholar
  6. 6.
    Tuszynski, J., Hameroff, S., Sataric, M.V., Trpisova, B., Nip, M.L.A.: Ferroelectric behavior in MT dipole lattices: implications for information processing, signaling and assembly/disassembly. J. Theor. Biol. 174, 371–380 (1995). doi: 10.1006/jtbi.1995.0105 CrossRefGoogle Scholar
  7. 7.
    Brown, J.A., Tuszynski, J.A.: Dipole interactions in axonal microtubules as a mechanism of signal propagation. Phys. Rev. E 56, 5834–5840 (1997). doi: 10.1103/PhysRevE.56.5834 CrossRefADSGoogle Scholar
  8. 8.
    Priel, A., Tuszynski, J.A., Cantiello, H.F.: The dendritic cytoskeleton as a computational device: an hypothesis. In: Tuszynski, J.A. (ed.) The Emerging Physics of Consciousness, pp. 293–325. Springer, Berlin (2006)CrossRefGoogle Scholar
  9. 9.
    Gundersen, G.G., Cook, T.A.: Microtubules and signal transduction. Curr. Opin. Cell Biol. 11, 81–94 (1999). doi: 10.1016/S0955-0674(99)80010-6 CrossRefGoogle Scholar
  10. 10.
    Glanz, J.: Cell biology: force-carrying web pervades living cell. Science 276, 678–679 (1997)CrossRefGoogle Scholar
  11. 11.
    Manitois, A.J., Chen, C.S., Ingber, D.E.: Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. U. S. A. 94, 849–854 (1997). doi: 10.1073/pnas.94.3.849 CrossRefADSGoogle Scholar
  12. 12.
    Priel, A., Tuszynski, J.A., Woolf, N.J.: Transitions in microtubule C-termini conformations as possible dendritic signaling phenomenon. Eur. Biophys. J. 35, 40–52 (2005). doi: 10.1007/s00249-005-0003-0 CrossRefGoogle Scholar
  13. 13.
    Cronly-Dillon, J., Perry, G.W.: Effect of visual experience on tubulin during a critical period of visual cortex development in the hooded rat. J. Physiol. 293, 469–484 (1979)Google Scholar
  14. 14.
    Lee, V.M.: Disruption of the cytoskeleton in Alzheimer’s disease. Curr. Opin. Neurobiol. 5, 663–668 (1995). doi: 10.1016/0959-4388(95)80073-5 CrossRefGoogle Scholar
  15. 15.
    Bjornstrom, K., Eintrei, C.: The difference between sleep and anaesthesia is in the intracellular signal. Acta Anaesthesiol. Scand. 47, 157–164 (2003). doi: 10.1034/j.1399-6576.2003.00007.x CrossRefGoogle Scholar
  16. 16.
    Tegmark, M.: Importance of quantum decoherence in brain processes. Phys. Rev. E 61, 4194–4206 (2000). doi: 10.1103/PhysRevE.61.4194 CrossRefADSGoogle Scholar
  17. 17.
    Tuszynski, J.A., Kurzynski, M.: Introduction to Molecular Biophysics. CRC, Florida (2003)Google Scholar
  18. 18.
    Tuszynski, J.A., Brown, J.A., Crawford, E., Carpenter, E.J., Nip, M.L.A., Dixon, J.M., Sataric, M.V.: Molecular dynamics simulations of tubulin structure and calculations of electrostatic properties of microtubules. Math. Comput. Model. 41, 1055–1070 (2005). doi: 10.1016/j.mcm.2005.05.002 zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Howard, W.D., Timasheff, S.N.: GDP state of tubulin: stabilization of double rings. Biochemistry 25, 8292–8300 (1986)CrossRefGoogle Scholar
  20. 20.
    Melki, R., Carlier, M.F., Pantaloni, D., Timasheff, S.N.: Cold depolymerization of microtubules to double rings: geometric stabilization of assemblies. Biochemistry 28, 9143–9152 (1989)CrossRefGoogle Scholar
  21. 21.
    McKean, P.G., Vaughan, S., Gull, K.: The extended tubulin superfamily. J. Cell Sci. 114, 2723–2733 (2001)Google Scholar
  22. 22.
    Vassilev, P.M., Dronzine, R.T., Vassileva, M.P., Georgiev, G.A.: Parallel arrays of microtubules in electric and magnetic fields. Biosci. Rep. 2, 1025–1029 (1982). doi: 10.1007/BF01122171 CrossRefGoogle Scholar
  23. 23.
    Kirson, E.D., Gurvich, Z., Schneiderman, R., Dekel, E., Itzhaki, A., Wasserman, Y., Schatzberger, R., Palti, Y.: Disruption of cancer cell replication by alternating electric fields. Cancer Res. 64, 3288–3295 (2004). doi: 10.1158/0008-5472.CAN-04-0083 CrossRefGoogle Scholar
  24. 24.
    Mershin, A., Sanabria, H., Miller, J.H., Nawarathna, D., Skoulakis, E.M.C., Mavromatos, N.E., Kolomenski, A.A., Schuessler, H.A., Luduena, R.F., Nanopoulos, D.V.: Towards experimental tests of quantum effects in cytoskeletal proteins. In: Tuszynski, J.A. (ed.) The Emerging Physics of Consciousness, pp. 95–170. Springer, Berlin (2006)CrossRefGoogle Scholar
  25. 25.
    Fritsche, W., Böhm, K., Unger, E., Köhler, J.M.: Making electrical contact to single moleclules. Nanotechnology 9, 177–183 (1998). doi: 10.1088/0957-4484/9/3/006 CrossRefADSGoogle Scholar
  26. 26.
    Umnov, M., Paulsinski, O.A., Deymier, P.A., Guzman, R., Hoying, J., Barnaby, H., Yang, Y., Raghavan, S.: Experimental evaluation of electrical conductivity of microtubules. J. Mater. Sci. 42, 373–378 (2007). doi: 10.1007/s10853-006-1075-7 CrossRefADSGoogle Scholar
  27. 27.
    Goddard, G., Whittier, J.E.: Biomolecules as nanomaterials: interface characterization for sensor development. Proc. SPIE 6172, 617206 (2006). doi: 10.1117/12.658771 CrossRefGoogle Scholar
  28. 28.
    Fritzsche, W., Köhler, J.M., Böhm, K.J., Unger, E., Wagner, T., Kirsch, R., Mertig, M., Pompe, W.: Wiring of metallized microtubules by electron beam-induced structuring. Nanotechnology 10, 331–335 (1999). doi: 10.1088/0957-4484/10/3/317 CrossRefADSGoogle Scholar
  29. 29.
    Priel, A., Ramos, A.J., Tuszynski, J.A., Cantiello, H.F.: A biopolmer transistor: electrical amplification by microtubules. Biophys. J. 90, 4639–4643 (2006). doi: 10.1529/biophysj.105.078915 CrossRefADSGoogle Scholar
  30. 30.
    Minoura, I., Muto, E.: Dielectric measurement of individual microtubules using the electroorientation method. Biophys. J. 90, 3739–3748 (2006). doi: 10.1529/biophysj.105.071324 CrossRefADSGoogle Scholar
  31. 31.
    Tuszynski, J.A., Priel, A., Brown, J.A., Cantiello, H.F., Dixon, J.M.: Electronic and ionic conductivities of microtubules and actin filaments, their consequences for cell signaling and applications to bioelectronics. In: Lyshevski, E. (ed.) Nano and Molecular Electronics Handbook Vol. 9, Ch. 18. CRC, London (2007)Google Scholar
  32. 32.
    Tuszynski, J.A., Brown, J.A., Hawrylak, P.: Dielectric polarization, electrical conduction, information processing and quantum computation in microtubules. Are they plausible? Philos. Trans. R. Soc. Lond. A 356, 1897–1926 (1998). doi: 10.1098/rsta.1998.0255 CrossRefADSGoogle Scholar
  33. 33.
    Brown, J.A.: A Study of the interactions between electromagnetic fields and microtubules: ferroelectric effects, signal transduction and electronic conduction. Ph.D. thesis, University of Alberta (1999)Google Scholar
  34. 34.
    Hameroff, S.: Ultimate Computing. North Holland, Amsterdam (1987)Google Scholar
  35. 35.
    Smith, S.A., Watt, R.C., Hameroff, S.R.: Cellular automata in cytoskeletal lattices. Physica D 10, 168–174 (1984). doi: 10.1016/0167-2789(84)90259-8 CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Rasmussen, S., Karampurwala, H., Vaidyanath, R., Jensen, K.S., Hameroff, S.: Computational connectionism within neurons: a model of cytoskeletal automata subserving neural networks. Physica D 42, 428–449 (1990). doi: 10.1016/0167-2789(90)90093-5 CrossRefADSGoogle Scholar
  37. 37.
    Campbell, R.D.J.: Information processing in microtubules. Ph.D. thesis, Queensland University of Technology (2002)Google Scholar
  38. 38.
    Hameroff, S.R., Dayhoff, J.E., Lahoz-Beltra, R., Samsonovich, A.V., Rasmussen, S.: Models for molecular computation: conformational automata in the cytoskeleton. Computer 25, 30–39 (1992). doi: 10.1109/2.166406 CrossRefGoogle Scholar
  39. 39.
    Lowe, J., Li, H., Downing, K.H., Nogales, E.: Refined structure of αβ-tubulin at 3.5 Å resolution. J. Mol. Biol. 313, 1045–1057 (2001). doi: 10.1006/jmbi.2001.5077 CrossRefGoogle Scholar
  40. 40.
    Baker, N.A., Sept, D., Joseph, S., Holst, M.J., McCammon, J.A.: Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U. S. A. 98, 10037–10041 (2001). doi: 10.1073/pnas.181342398 CrossRefADSGoogle Scholar
  41. 41.
    Humphrey, W., Dalke, A., Schulten, K.: VMD—visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). doi: 10.1016/0263-7855(96)00018-5 CrossRefGoogle Scholar
  42. 42.
    Gray, H.B., Winkler, J.R.: Electron tunneling through proteins. Q. Rev. Biophys. 36, 341–372 (2003). doi: 10.1017/S0033583503003913 CrossRefGoogle Scholar
  43. 43.
    Dreyer, J.L.: Electron transfer in biological systems: an overview. Experientia 40, 653–675 (1984). doi: 10.1007/BF01949719 CrossRefGoogle Scholar
  44. 44.
    Marcus, R.A., Sutin, N.: Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811, 265–322 (1985)Google Scholar
  45. 45.
    Canters, G.W., Dennison, C.: Biological electron transfer: structural and mechanistic studies. Biochimie 77, 506–515 (1995). doi: 10.1016/0300-9084(96)88167-3 CrossRefGoogle Scholar
  46. 46.
    Baum, R.M.: Views on biological, long-range electron transfer stir debate. Chem. Eng. News 22, 20–23 (1993)Google Scholar
  47. 47.
    Gray, H.B., Winkler, J.R.: Electron transfer in proteins. Annu. Rev. Biochem. 65, 537–561 (1996). doi: 10.1146/ CrossRefGoogle Scholar
  48. 48.
    Aubert, C., Vos, M.H., Mathis, P., Eker, A.P.M., Bretel, K.: Intraprotein radical transfer during photoactivation of DNA photolyase. Nature 405, 586–590 (2000). doi: 10.1038/35014644 CrossRefADSGoogle Scholar
  49. 49.
    Wagenknecht, H.A., Stemp, E.D.A., Barton, J.K.: Evidence of electron transfer from peptides to DNA: oxidation of DNA-bound tryptophan using the flash-quench technique. J. Am. Chem. Soc. 122, 1–7 (2000). doi: 10.1021/ja991855i CrossRefGoogle Scholar
  50. 50.
    Becker, J.S., Oliver, J.M., Berlin, R.D.: Fluorescence techniques for following interactions of microtubule subunits and membranes. Nature 254, 152–154 (1975). doi: 10.1038/254152a0 CrossRefADSGoogle Scholar
  51. 51.
    Ravelli, R.B., Gigant, B., Curmi, P.A., Jourdain, I., Lachkar, S., Sobel, A., Knossow, M.: Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428, 198–202 (2004). doi: 10.1038/nature02393 CrossRefADSGoogle Scholar
  52. 52.
    Eley, D.D.: Studies of organic semiconductors for 40 years—I. The mobile π-electron—40 years on. Mol. Cryst. Liq. Cryst. (Phila. Pa.) 171, 1–21 (1989). doi: 10.1080/00268948908065783 CrossRefGoogle Scholar
  53. 53.
    Johnson, E.A., Williams, H.T.: Quantum solutions for a symmetric double square well. Am. J. Phys. 50, 239–243 (1982). doi: 10.1119/1.13046 CrossRefADSGoogle Scholar
  54. 54.
    Hameroff, S.R., Tuszynski, J.A.: Search for quantum and classical modes of information processing in microtubules: implications for “the living state”. In: Musmeci, F., Ho, M. (eds.) Bioenergetic Organization in Living Systems. World Scientific, Singapore (2003)Google Scholar
  55. 55.
    Portet, S., Tuszynski, J.A., Hogue, C.W.V., Dixon, J.M.: Elastic vibrations in seamless microtubules. Eur. Biophys. J. 34, 912–920 (2005). doi: 10.1007/s00249-005-0461-4 CrossRefGoogle Scholar
  56. 56.
    Bartnik, E.A., Blinowska, K.J.: Stability of quantum capture in Langmuir–Blodgett monolayers against positional disorder. Phys. Lett. A 169, 46–50 (1992). doi: 10.1016/0375-9601(92)90803-T CrossRefADSGoogle Scholar
  57. 57.
    Marder, M.P.: Condensed Matter Physics. Wiley, New York (2000)Google Scholar
  58. 58.
    Tuszynski, J.A., Jørgensen, M.F., Möbius, D.: Mechanisms of exciton energy transfer in Scheibe aggregates. Phys. Rev. E 59, 4374–4382 (1999). doi: 10.1103/PhysRevE.59.4374 CrossRefADSGoogle Scholar
  59. 59.
    Czikklely, V., Forsterling, H.D., Kuhn, H.: Extended dipole model for aggregates of dye molecules. Chem. Phys. Lett. 6, 207–210 (1970). doi: 10.1016/0009-2614(70)80220-2 CrossRefADSGoogle Scholar
  60. 60.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn, p. 151. Wiley, New York (1999)zbMATHGoogle Scholar
  61. 61.
    Schoutens, J.: Dipole–dipole interactions in microtubules. J. Biol. Phys. 31, 35–55 (2005). doi: 10.1007/s10867-005-3886-1 CrossRefGoogle Scholar
  62. 62.
    Jolley, L.B.W.: Summation of Series, 2nd revision. Dover, New York (1961)zbMATHGoogle Scholar
  63. 63.
    Seife, C.: Cold numbers unmake the quantum mind. Science 287, 791 (2000). doi: 10.1126/science.287.5454.791 CrossRefGoogle Scholar
  64. 64.
    Koch, C., Hepp, K.: Quantum mechanics in the brain. Nature 440, 611 (2006). doi: 10.1038/440611a CrossRefADSGoogle Scholar
  65. 65.
    Hameroff, S.: Consciousness, neurobiology and quantum mechanics: the case for a connection. In: Tuszynski, J.A. (ed.) The Emerging Physics of Consciousness, pp. 193–253. Springer, Berlin (2006)CrossRefGoogle Scholar
  66. 66.
    Hameroff, S., Nip, A., Porter, M., Tuszynski, J.: Conduction pathways in microtubules, biological quantum computation, and consciousness. Biosystems 64, 149–168 (2002). doi: 10.1016/S0303-2647(01)00183-6 CrossRefGoogle Scholar
  67. 67.
    Woutersen, S., Bakker, H.J.: Resonant intermolecular transfer of vibrational energy in liquid water. Nature 402, 507–509 (1999). doi: 10.1038/990058 CrossRefADSGoogle Scholar
  68. 68.
    Nielson, M., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2001)Google Scholar
  69. 69.
    Long, Y., Abu-Irhayem, E., Kratz, H.-B.: Peptide electron transfer: more questions than answers. Chem. Eur. J. 11, 5186 (2005). doi: 10.1002/chem.200500143 CrossRefGoogle Scholar
  70. 70.
    Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P., Geim, A.K.: Room-temperature quantum Hall effect in graphene. Science 315, 1379 (2007). doi: 10.1126/science.1137201 CrossRefADSGoogle Scholar
  71. 71.
    Collini, E., Scholes, G.D.: Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323, 369 (2009). doi: 10.1126/science.1164016 CrossRefADSGoogle Scholar
  72. 72.
    Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.-K., Mancal, T., Cheng, Y.-C., Blankenship, R.E., Fleming, G.R.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782 (2007). doi: 10.1038/nature05678 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Travis John Adrian Craddock
    • 1
  • Jack A. Tuszynski
    • 1
    Email author
  1. 1.Department of PhysicsUniversity of AlbertaEdmontonCanada

Personalised recommendations