Journal of Biological Physics

, Volume 35, Issue 4, pp 465–480 | Cite as

On the role of synchrony for neuron–astrocyte interactions and perceptual conscious processing

  • Alfredo PereiraJr.
  • Fábio Augusto Furlan
Original Paper


Recent research on brain correlates of cognitive processes revealed the occurrence of global synchronization during conscious processing of sensory stimuli. In spite of technological progress in brain imaging, an explanation of the computational role of synchrony is still a highly controversial issue. In this study, we depart from an analysis of the usage of blood-oxygen-level-dependent functional magnetic resonance imaging for the study of cognitive processing, leading to the identification of evoked local field potentials as the vehicle for sensory patterns that compose conscious episodes. Assuming the “astrocentric hypothesis” formulated by James M. Robertson (astrocytes being the final stage of conscious processing), we propose that the role of global synchrony in perceptual conscious processing is to induce the transfer of information patterns embodied in local field potentials to astrocytic calcium waves, further suggesting that these waves are responsible for the “binding” of spatially distributed patterns into unitary conscious episodes.


Astrocytes Perceptual consciousness Local field potentials BOLD signal Functional magnetic resonance Global synchrony Calcium waves 



The authors thank the Brazilian National Research Council (CNPQ) for a grant conceded to APJ; Dr. Bernard Baars, for discussion of an early draft of this paper in his Advanced Seminar (an activity of Consciousness: the Webcourse, supported by the Univ. of Arizona), and two anonymous reviewers for their constructive criticisms and suggestions.


  1. 1.
    Robertson, J.M.: The astrocentric hypothesis: proposed role of astrocytes in consciousness and memory formation. J. Physiol. (Paris) 96, 251–255 (2002). doi: 10.1016/S0928-4257(02)00013-X CrossRefGoogle Scholar
  2. 2.
    Perea, G., Araque, A.: Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J. Neurosci. 25, 2192–2203 (2005). doi: 10.1523/JNEUROSCI.3965-04.2005 CrossRefGoogle Scholar
  3. 3.
    Halassa, M.M., Fellin, T., Takano, H., Dong, J.H., Haydon, P.G.: Synaptic islands defined by the territory of a single astrocyte. J. Neurosci. 27, 6473–6477 (2007). doi: 10.1523/JNEUROSCI.1419-07.2007 CrossRefGoogle Scholar
  4. 4.
    Haydon, P.G., Carmignoto, G.: Astrocyte control of synaptic transmission and neurovascular coupling. Physiol. Rev. 86, 1009–1031 (2006). doi: 10.1152/physrev.00049.2005 CrossRefGoogle Scholar
  5. 5.
    Bushong, E.A., Martone, M.E., Jones, Y.Z., Ellisman, M.H.: Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22, 183–192 (2002)Google Scholar
  6. 6.
    Agulhon, C., Petravicz, J., McMullen, A.B., Sweger, E.J., Minton, S.K., Taves, S.R., Casper, K.B., Fiacco, T.A., McCarthy, K.D.: What is the role of astrocyte calcium in neurophysiology? Neuron 59, 932–946 (2008). doi: 10.1016/j.neuron.2008.09.004 CrossRefGoogle Scholar
  7. 7.
    Araque, A., Parpura, V., Sanzgiri, R.P., Haydon, P.G.: Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215 (1999). doi: 10.1016/S0166-2236(98)01349-6 CrossRefGoogle Scholar
  8. 8.
    Araque, A., Martín, E.D., Perea, G., Arellano, J.I., Buño, W.: Synaptically released acetylcholine evokes Ca2 +  elevations in astrocytes in hippocampal slices. J. Neurosci. 22, 2443–2450 (2002)Google Scholar
  9. 9.
    Kang, J., Jiang, L., Goldman, S.A., Nedergaard, M.: Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692 (1998). doi: 10.1038/3684 CrossRefGoogle Scholar
  10. 10.
    Perea, G., Araque, A.: Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J. Neurosci. 25, 2192–2203 (2005). doi: 10.1523/JNEUROSCI.3965-04.2005 CrossRefGoogle Scholar
  11. 11.
    Cornell-Bell, A.H., Finkbeiner, S.M., Cooper, M.S., Smith, S.J.: Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473 (1990). doi: 10.1126/science.1967852 ADSCrossRefGoogle Scholar
  12. 12.
    Charles, A.C., Merrill, J.E., Dirksen, E.R., Sanderson, M.J.: Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6, 983–992 (1991). doi: 10.1016/0896-6273(91)90238-U CrossRefGoogle Scholar
  13. 13.
    Porter, J.T., McCarthy, K.D.: Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J. Neurosci. 16, 5073–5081 (1996)Google Scholar
  14. 14.
    Pasti, L., Volterra, A., Pozzan, T., Carmignoto, G.: Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17, 7817–7830 (1997)Google Scholar
  15. 15.
    Verkhratsky, A., Steinhauser, C.: Ion channels in glial cells. Brain Res. Rev. 32, 380–412 (2000). doi: 10.1016/S0165-0173(99)00093-4 CrossRefGoogle Scholar
  16. 16.
    Reyes, R.C., Parpura, V.: The trinity of Ca2 +  sources for the exocytotic glutamate release from astrocytes. Neurochem. Int. (2009, in press). doi: 10.1016/j.neuint.2008.12.018 Google Scholar
  17. 17.
    De Pittà, M., Volman, V., Levine, H., Pioggia, G., De Rossi, D., Ben-Jacob, E.: Coexistence of amplitude and frequency modulations in intracellular calcium dynamics. Phys. Rev. E 77, 030903-R (2008)Google Scholar
  18. 18.
    Mothet, J.P., Pollegioni, L., Ouanounou, G., Martineau, M., Fossier, P., Baux, G.: Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d-serine. Proc. Natl. Acad. Sci. U. S. A. 102, 5606–5611 (2005). doi: 10.1073/pnas.0408483102 ADSCrossRefGoogle Scholar
  19. 19.
    Newman, E.A.: Glial cell inhibition of neurons by release of ATP. J. Neurosci. 23, 1659–1666 (2003)Google Scholar
  20. 20.
    Charles, A.C.: Glia-neuron intercellular calcium signaling. Dev. Neurosci. 16, 196–206 (1994). doi: 10.1159/000112107 CrossRefGoogle Scholar
  21. 21.
    Parpura, V., Basarsky, T.A., Liu, F., Jeftinija, K., Jeftinija, S., Haydon, P.G.: Glutamate-mediated astrocyte-neuron signalling. Nature 369, 744–747 (1994). doi: 10.1038/369744a0 ADSCrossRefGoogle Scholar
  22. 22.
    Hassinger, T.D., Atkinson, P.B., Strecker, G.J., Whalen, L.R., Dudek, F.E., Kossel, A.H., Kater, S.B.: Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves. J. Neurobiol. 28, 159–170 (1995). doi: 10.1002/neu.480280204 CrossRefGoogle Scholar
  23. 23.
    Bezzi, P., Carmignoto, G., Pasti, L., Vesce, S., Rossi, D., Rizzini, B.L., Pozzan, T., Volterra, A.: Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391, 281–285 (1998). doi: 10.1038/34651 ADSCrossRefGoogle Scholar
  24. 24.
    Fellin, T., Pascual, O., Gobbo, S., Pozzan, T., Haydon, P.G., Carmignoto, G.: Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43, 729–743 (2004). doi: 10.1016/j.neuron.2004.08.011 CrossRefGoogle Scholar
  25. 25.
    Bartlett, T.E., Bannister, N.J., Collet, V.J., Dargan, S.L., Massey, P.V., Bortolotto, Z.A., Fitzjohn, S.M., Bashir, Z.I., Collingridge, G.L., Lodge, D.: Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus. Neuropharmacology 52, 60–70 (2007). doi: 10.1016/j.neuropharm.2006.07.013 CrossRefGoogle Scholar
  26. 26.
    Dingledine, R., Borges, K., Bowie, D., Traynelis, S.F.: The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999)Google Scholar
  27. 27.
    Araque, A., Parpura, V., Sanzgiri, R.P., Haydon, P.G.: Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur. J. Neurosci. 10, 2129–2142 (1998). doi: 10.1046/j.1460-9568.1998.00221.x CrossRefGoogle Scholar
  28. 28.
    Parri, H.R., Gould, T.M., Crunelli, V.: Spontaneous astrocytic Ca2 +  oscillations in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci. 4, 803–812 (2001). doi: 10.1038/90507 CrossRefGoogle Scholar
  29. 29.
    Angulo, M.C., Kozlov, A.S., Charpak, S., Audinat, E.: Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J. Neurosci. 24, 6920–6927 (2004). doi: 10.1523/JNEUROSCI.0473-04.2004 CrossRefGoogle Scholar
  30. 30.
    Fellin, T.: Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. J. Neurochem. 108, 533–544 (2009). doi: 10.1111/j.1471-4159.2008.05830.x CrossRefGoogle Scholar
  31. 31.
    Volman, V., Ben-Jacob, E., Levine, H.: The astrocyte as a gatekeeper of synaptic information transfer. Neural Comput. 19, 303–326 (2007). doi: 10.1162/neco.2007.19.2.303 zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Perea, G., Araque, A.: Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317, 1083–1086 (2007). doi: 10.1126/science.1144640 ADSCrossRefGoogle Scholar
  33. 33.
    Gibbs, M.E., Hutchinson, D., Hertz, L.: Astrocytic involvement in learning and memory consolidation. Neurosci. Biobehav. Rev. 32, 927–944 (2008). doi: 10.1016/j.neubiorev.2008.02.001 CrossRefGoogle Scholar
  34. 34.
    Caudle, R.M.: Memory in astrocytes: a hypothesis. Theor. Biol. Med. Model. 3, 2 (2006). doi: 10.1186/1742-4682-3-2 CrossRefGoogle Scholar
  35. 35.
    Schummers, J., Yu, H., Sur, M.: Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320, 1638–1643 (2008). doi: 10.1126/science.1156120 ADSCrossRefGoogle Scholar
  36. 36.
    Tian, G., Azmi, H., Takano, T., Xu, Q., Peng, W., Lin, J., Oberheim, N., Lou, N., Wang, X., Zielke, H., Kang, J., Nedergaard, M.: An astrocytic basis of epilepsy. Nat. Med. 11, 973–981 (2005)Google Scholar
  37. 37.
    Silchenko, A.N., Tass, P.A.: Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol. Cybern. 98, 61–74 (2008). doi: 10.1007/s00422-007-0196-7 zbMATHCrossRefGoogle Scholar
  38. 38.
    Halassa, M., Florian, C., Fellin, T., Munoz, J., Lee, S., Abel, T., Haydon, P., Frank, M.: Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61, 213–219 (2009). doi: 10.1016/j.neuron.2008.11.024 CrossRefGoogle Scholar
  39. 39.
    Pereira Jr., A.: Astrocyte-trapped calcium ions: the hypothesis of a quantum-like conscious protectorate. Quantum Biosystems 2, 80–92 (2007)Google Scholar
  40. 40.
    Wulff, P., Goetz, T., Leppä, E., Linden, A.M., Renzi, M., Swinny, J.D., Vekovischeva, O.Y., Sieghart, W., Somogyi, P., Korpi, E.R., Farrant, M., Wisden, W.: From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nat. Neurosci. 10, 923–929 (2007). doi: 10.1038/nn1927 CrossRefGoogle Scholar
  41. 41.
    Logothetis, N.K., Wandell, B.A.: Interpreting the BOLD signal. Annu. Rev. Physiol. 66, 735–769 (2004). doi: 10.1146/annurev.physiol.66.082602.092845 CrossRefGoogle Scholar
  42. 42.
    Logothetis, N.K., Pfeuffer, J.: On the nature of BOLD fMRI contrast mechanism. Magn. Reson. Imaging 22, 1517–1531 (2004). doi: 10.1016/j.mri.2004.10.018 CrossRefGoogle Scholar
  43. 43.
    Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A.: Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001). doi: 10.1038/35084005 ADSCrossRefGoogle Scholar
  44. 44.
    Zonta, M., Angulo, M.C., Gobbo, S., Rosengarten, B., Hossmann, K.A., Pozzan, T., Carmignoto, G.: Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6, 43–50 (2003). doi: 10.1038/nn980 CrossRefGoogle Scholar
  45. 45.
    Filosa, J.A., Bonev, A.D., Nelson, M.T.: Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ. Res. 95, e73–e81 (2004). doi: 10.1161/01.RES.0000148636.60732.2e CrossRefGoogle Scholar
  46. 46.
    Metea, M.R., Newman, E.A.: Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J. Neurosci. 26, 2862–2870 (2006). doi: 10.1523/JNEUROSCI.4048-05.2006 CrossRefGoogle Scholar
  47. 47.
    Takano, T., Tian, G.F., Peng, W., Lou, N., Libionka, W., Han, X., Nedergaard, M.: Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9, 159–161 (2006). doi: 10.1038/nn1623 CrossRefGoogle Scholar
  48. 48.
    Haynes, J.D., Rees, G.: Decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 7, 523–534 (2006). doi: 10.1038/nrn1931 CrossRefGoogle Scholar
  49. 49.
    Kamitani, Y., Tong, F.: Decoding the visual and subjective contents of the human brain. Nat. Neurosci. 8, 679–685 (2005). doi: 10.1038/nn1444 CrossRefGoogle Scholar
  50. 50.
    Rosch, E.: Cognitive representations of semantic categories. J. Exp. Psychol. (Gen.) 104, 192–233 (1975). doi: 10.1037/0096-3445.104.3.192 CrossRefGoogle Scholar
  51. 51.
    Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press, Cambridge (2000)Google Scholar
  52. 52.
    Gärdenfors, P.: Conceptual spaces as a framework for knowledge representations. Mind Matter 2, 9–27 (2004)Google Scholar
  53. 53.
    Niessing, J., Ebisch, B., Schmidt, K.E., Niessing, M., Singer, W., Galuske, R.A.: Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309, 948–951 (2005). doi: 10.1126/science.1110948 ADSCrossRefGoogle Scholar
  54. 54.
    Jermakowicz, W.J., Casagrande, V.A.: Neural networks a century after Cajal. Brain Res. Rev. 55, 264–284 (2007). doi: 10.1016/j.brainresrev.2007.06.003 CrossRefGoogle Scholar
  55. 55.
    Samonds, J.M., Bonds, A.B.: Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex. J. Neurophysiol. 93, 223–236 (2005). doi: 10.1152/jn.00548.2004 CrossRefGoogle Scholar
  56. 56.
    Izhikevich, E.: Polychronization: computation with spikes. Neural Comput. 18, 245–282 (2006). doi: 10.1162/089976606775093882 zbMATHMathSciNetCrossRefGoogle Scholar
  57. 57.
    Abeles, M.: Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University Press, New York (1991)Google Scholar
  58. 58.
    Treisman, A.: Solutions to the binding problem: progress through controversy and convergence. Neuron 24, 105–110 (1999). doi: 10.1016/S0896-6273(00)80826-0 CrossRefGoogle Scholar
  59. 59.
    Buzsáki, G.: The structure of consciousness. Nature 446, 267 (2007). doi: 10.1038/446267a ADSCrossRefGoogle Scholar
  60. 60.
    Roskies, A.L.: The binding problem. Neuron 24, 7–9 (1999). doi: 10.1016/S0896-6273(00)80817-X CrossRefGoogle Scholar
  61. 61.
    Seth, A.K., McKinstry, J.L., Edelman, G.M., Krichmar, J.L.: Visual binding through reentrant connectivity and dynamic synchronization in a brain-based device. Cereb. Cortex 14, 1185–1199 (2004). doi: 10.1093/cercor/bhh079 CrossRefGoogle Scholar
  62. 62.
    Bienenstock, E.: A model of neocortex. Network: Comput. Neural Syst. 6, 179–224 (1995)zbMATHCrossRefGoogle Scholar
  63. 63.
    Seth, A.K., Izhikevich, E., Reeke, G.N., Edelman, G.M.: Theories and measures of consciousness: an extended framework. Proc. Natl. Acad. Sci. U. S. A. 103, 10799–10804 (2006). doi: 10.1073/pnas.0604347103 ADSCrossRefGoogle Scholar
  64. 64.
    Nadkarni, S., Jung, P.: Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys. Rev. Lett. 91, 268101 (2003). doi: 10.1103/PhysRevLett.91.268101 ADSCrossRefGoogle Scholar
  65. 65.
    Basar, E., Basar-Eroglu, S., Karaka, S., Schurmann, M.: Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int. J. Psychophysiol. 39, 241–248 (1991). doi: 10.1016/S0167-8760(00)00145-8 CrossRefGoogle Scholar
  66. 66.
    Blumenfeld, H., Taylor, J.: Why do seizures cause loss of consciousness? Neurosci. 9, 301–310 (2003). doi: 10.1177/1073858403255624 CrossRefGoogle Scholar
  67. 67.
    König, P., Engel, A.K., Singer, W.: Relation between oscillatory activity and long-range synchronization in cat visual cortex. Proc. Natl. Acad. Sci. U. S. A. 92, 290–294 (1995). doi: 10.1073/pnas.92.1.290 ADSCrossRefGoogle Scholar
  68. 68.
    Engel, A.K., Singer, W.: Temporal binding and the neural correlates of sensory awareness. Trends Cogn. Sci. 5, 16–25 (2001). doi: 10.1016/S1364-6613(00)01568-0 CrossRefGoogle Scholar
  69. 69.
    Melloni, L., Molina, C., Pena, M., Torres, D., Singer, W., Rodriguez, E.: Synchronization of neural activity across cortical areas correlates with conscious perception. J. Neurosci. 27, 2858–2865 (2007). doi: 10.1523/JNEUROSCI.4623-06.2007 CrossRefGoogle Scholar
  70. 70.
    Palva, S., Palva, J.M.: New vistas for alpha-frequency band oscillations. Trends Neurosci. 30, 150–158 (2007). doi: 10.1016/j.tins.2007.02.001 CrossRefGoogle Scholar
  71. 71.
    Sandkühler, S., Bhattacharya, J.: Deconstructing insight: EEG correlates of insightful problem solving. PLoS One 3, e1459 (2008). doi: 10.1371/journal.pone.0001459 ADSCrossRefGoogle Scholar
  72. 72.
    Jensen, O.: Reading the hippocampal code by theta phase-locking. Trends Cogn. Sci. 9, 551–554 (2005). doi: 10.1016/j.tics.2005.10.003 CrossRefGoogle Scholar
  73. 73.
    Tononi, G.: An information integration theory of consciousness. BMC Neurosci. 5, 42 (2004). doi: 10.1186/1471-2202-5-42 CrossRefGoogle Scholar
  74. 74.
    Tononi, G.: Consciousness, information integration, and the brain. Prog. Brain Res. 150, 109–126 (2005). doi: 10.1016/S0079-6123(05)50009-8 CrossRefGoogle Scholar
  75. 75.
    Rocha, A., Massad, E., Pereira, A. Jr.: The Brain: From Fuzzy Grammar to Quantum Computing. Springer, Berlin (2005)zbMATHGoogle Scholar
  76. 76.
    Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)ADSCrossRefGoogle Scholar
  77. 77.
    Hughes, R.J., James, D.F.V., Gomez, J.J., Gulley, M.S., Holzscheiter, M.H., Kwiat, P.G., Lamoreaux, S.K., Peterson, C.G., Sandberg, V.D., Schauer, M.M., Simmons, C.M., Thorburn, C.E., Tupa, D., Wang, P.Z.,White, A.G.: The Los Alamos trapped ion quantum computer experiment. Prog. Phys. 46, 329–361 (1998)Google Scholar
  78. 78.
    Reyes, R.C., Parpura, V.: Models of astrocytic Ca2 +  dynamics and epilepsy. Drug Discov. Today 5, 13–18 (2008)Google Scholar
  79. 79.
    Hirase, H., Qian, L., Barthó, P., Buzsáki, G.: Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol. 4, e96 (2004). doi: 10.1371/journal.pbio.0020096 CrossRefGoogle Scholar
  80. 80.
    Roth, B.J., Yagodin, S.V., Holtzclaw, L., Russell, J.T.: A mathematical model of agonist-induced propagation of calcium waves in astrocytes. Cell Calcium 17, 53–64 (1995). doi: 10.1016/0143-4160(95)90102-7 CrossRefGoogle Scholar
  81. 81.
    Halassa, M.M., Fellin, T., Haydon, P.G.: The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol. Med. 13, 54–63 (2007). doi: 10.1016/j.molmed.2006.12.005 CrossRefGoogle Scholar
  82. 82.
    McNally, L., Bhagwagar, Z., Hannestad, J.: Inflammation, glutamate, and glia in depression: a literature review. CNS Spectr. 13, 501–510 (2008)Google Scholar
  83. 83.
    De Keyser, J., Mostert, J.P., Koch, M.W.: Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J. Neurol. Sci. 267, 3–16 (2008). doi: 10.1016/j.jns.2007.08.044 CrossRefGoogle Scholar
  84. 84.
    Laming, P.R.: Potassium signaling in the brain: its role in behaviour. Neurochem. Int. 36, 271–290 (2000). doi: 10.1016/S0197-0186(99)00136-9 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of BiosciencesSão Paulo State University (UNESP)BotucatuBrasil
  2. 2.University of Marília (Unimar)MaríliaBrasil

Personalised recommendations