Journal of Biological Physics

, Volume 34, Issue 5, pp 475–485 | Cite as

Effect of Calcium on Electrical Energy Transfer by Microtubules

  • Avner Priel
  • Arnolt J. Ramos
  • Jack A. Tuszynski
  • Horacio F. CantielloEmail author
Original Paper


Microtubules (MTs) are important cytoskeletal superstructures implicated in neuronal morphology and function, which are involved in vesicle trafficking, neurite formation and differentiation and other morphological changes. The structural and functional properties of MTs depend on their high intrinsic charge density and functional regulation by the MT depolymerising properties of changes in Ca2 +  concentration. Recently, we reported on remarkable properties of isolated MTs, which behave as biomolecular transistors capable of amplifying electrical signals (Priel et al., Biophys J 90:4639–4643, 2006). Here, we demonstrate that MT-bathing (cytoplasmic) Ca2 +  concentrations modulate the electrodynamic properties of MTs. Electrical amplification by MTs was exponentially dependent on the Ca2 +  concentration between 10 − 7 and 10 − 2 M. However, the electrical connectivity (coupling) of MTs was optimal at a narrower window of Ca2 +  concentrations. We observed that while raising bathing Ca2 +  concentration increased electrical amplification by MTs, energy transfer was highest in the presence of ethylene glycol tetraacetic acid (lowest Ca2 +  concentration). Our data indicate that Ca2 +  is an important modulator of electrical amplification by MTs, supporting the hypothesis that this divalent cation, which adsorbs onto the polymer’s surface, plays an important role as a regulator of the electrical properties of MTs. The Ca2 + -dependent ability of MTs to modulate and amplify electrical signals may provide a novel means of cell signaling, likely contributing to neuronal function.


Cytoskeleton Biomolecular transistors Electrical connectivity Microtubule dynamics Electrical amplification 



Funding from NSERC (Canada), MITACS and Technology Innovations, LLC of Rochester, NY, USA supported this research (AP & JT). HC was partially funded by the PKD Foundation. AJR is the recipient of a PKD Foundation postdoctoral fellowship.


  1. 1.
    Dustin, P.: Microtubules. Springer, Berlin (1984)Google Scholar
  2. 2.
    Inclán, Y., Nogales, E.: Potential for self-assembly and microtubule interaction of α-, β- and γ-tubulin. J. Cell Sci. 114, 413–422 (2000)Google Scholar
  3. 3.
    Li, H., DeRosier, D.J., Nicholson, W.V., Nogales, E., Downing, K.H.: Microtubule structure at 8 Angstrom resolution. Structure 10, 1317–1328 (2002). doi: 10.1016/S0969-2126(02)00827-4 CrossRefGoogle Scholar
  4. 4.
    Desai, A., Mitchison, T.J.: Microtubule polymerization dynamics. Annu. Rev. Dev. Biol. 13, 83–117 (1997). doi: 10.1146/annurev.cellbio.13.1.83 CrossRefGoogle Scholar
  5. 5.
    Nogales, E.: Structural insights into microtubule function. Annu. Rev. Biochem. 69, 277–302 (2000). doi: 10.1146/annurev.biochem.69.1.277 CrossRefMathSciNetGoogle Scholar
  6. 6.
    Minoura, I., Muto, E.: Dielectric measurement of individual microtubules using the eletroorientation method. Biophys. J. 90, 3739–3748 (2006). doi: 10.1529/biophysj.105.071324 CrossRefADSGoogle Scholar
  7. 7.
    Van den Heuvel, M.G., de Graaf, M.P., Dekker, C.: Molecular sorting by electrical steering of microtubules in kinesin-coated channels. Science 312, 910–914 (2006). doi: 10.1126/science.1124258 CrossRefADSGoogle Scholar
  8. 8.
    Vassilev, P., Kanazirska, M., Tien, H.T.: Intermembrane linkage mediated by tubulin. Biochem. Biophys. Res. Commun. 126, 559–565 (1985). doi: 10.1016/0006-291X(85)90642-4 CrossRefGoogle Scholar
  9. 9.
    Stracke, R., Bohm, K.J., Wollweber, L., Tuszynski, J.A., Unger, E.: Analysis of the migration behaviour of single microtubules in electric fields. Biochem. Biophys. Res. Commun. 293, 602–609 (2002). doi: 10.1016/S0006-291X(02)00251-6 CrossRefGoogle Scholar
  10. 10.
    Priel, A., Ramos, A.J., Tuszynski, J.A., Cantiello, H.F.: A biopolymer transistor: electrical amplification by microtubules. Biophys. J. 90, 4639–4643 (2006). doi: 10.1529/biophysj.105.078915 CrossRefADSGoogle Scholar
  11. 11.
    Patton, C., Thompson, S., Epel, D.: Some precautions in using chelators to buffer metals in biological solutions. Cell Calcium 35, 427–431 (2004). doi: 10.1016/j.ceca.2003.10.006 CrossRefGoogle Scholar
  12. 12.
    O’Brien, E.T., Salmon, E.D., Erickson, H.P.: How calcium causes microtubule depolymerization. Cell Motil. Cytos. 36, 125–135 (1997). doi: 10.1002/(SICI)1097-0169(1997)36:2<125::AID-CM3>3.0.CO;2–8 CrossRefGoogle Scholar
  13. 13.
    Regehr, W.G., Tank, D.W.: Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells. J. Neurosci. 12(11), 4202–4223 (1992)Google Scholar
  14. 14.
    Zarkovic, M., Henquin, J.C.: Synchronization and entrainment of cytoplasmic Ca2 +  oscillations in cell clusters prepared from single or multiple mouse pancreatic islets. Am. J. Physiol. Endocrinol. Metab. 287, E340–E347 (2004). doi: 10.1152/ajpendo.00069.2004 CrossRefGoogle Scholar
  15. 15.
    Hallaq, H.A., Haupert Jr., G.T.: Positive inotropic effects of the endogenous Na + /K + -transporting ATPase inhibitor from the hypothalamus. Proc. Natl. Acad. Sci. USA 86, 10080–10084 (1989). doi: 10.1073/pnas.86.24.10080 CrossRefADSGoogle Scholar
  16. 16.
    Calaghan, S.C., Le Guennec, J.Y., White, E.: Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. Prog. Biophys. Mol. Biol. 84, 29–59 (2004). doi: 10.1016/S0079-6107(03)00057-9 CrossRefGoogle Scholar
  17. 17.
    Karr, T.L., Kristofferson, D., Purich, D.L.: Calcium ion induces endwise depolymerization of bovine brain microtubules. J. Biol. Chem. 255, 11853–11856 (1980)Google Scholar
  18. 18.
    Astier, Y., Bayley, H., Howorka, S.: Protein components for nanodevices. Curr. Opin. Chem. Biol. 9, 576–584 (2005)Google Scholar
  19. 19.
    Vizcarra, C.L., Mayo, S.L.: Electrostatics in computational protein design. Curr. Opin. Chem. Biol. 9, 622–626 (2005)Google Scholar
  20. 20.
    Sheetz, M.P., Steuer, E.R., Schroer, T.A.: The mechanism and regulation of fast axonal transport. Trends Pharmacol. Sci. 12, 474–478 (1989)Google Scholar
  21. 21.
    Baas, P.W., Deitch, J.S., Black, M.M., Banker, G.A.: Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl. Acad. Sci. USA 85, 8335–8339 (1988). doi: 10.1073/pnas.85.21.8335 CrossRefADSGoogle Scholar
  22. 22.
    Burton, P.R.: Dendrites of mitral cell neurons contain microtubules of opposite polarity. Brain Res. 473, 107–115 (1988). doi: 10.1016/0006-8993(88)90321-6 CrossRefADSGoogle Scholar
  23. 23.
    Brady, S.T., Lasek, R.J., Allen, R.D.: Video microscopy of fast axonal transport in extruded axoplasm: a new model for study of molecular mechanisms. Cell Motil. 5, 81–101 (1985). doi: 10.1002/cm.970050203 CrossRefGoogle Scholar
  24. 24.
    McNiven, M.A., Ward, J.B.: Calcium regulation of pigment transport in vitro. J. Cell Biol. 106, 111–125 (1988). doi: 10.1083/jcb.106.1.111 CrossRefGoogle Scholar
  25. 25.
    Smith, R.S., Bisby, M.A. (eds.): Axonal Transport. In: Neurology and Neurobiology, vol. 25, pp. 311–26. Alan R. Liss, New York (1987)Google Scholar
  26. 26.
    Tyner, K.M., Kopelman, R., Philbert, M.A.: “Nanosized voltmeter” enables cellular-wide electric field mapping. Biophys. J. 93, 1163–1174 (2007). doi: 10.1529/biophysj.106.092452 CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Avner Priel
    • 1
  • Arnolt J. Ramos
    • 2
    • 3
  • Jack A. Tuszynski
    • 1
  • Horacio F. Cantiello
    • 2
    • 3
    Email author
  1. 1.Department of PhysicsUniversity of Alberta EdmontonEdmontonCanada
  2. 2.Nephrology Division and Electrophysiology CoreMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  3. 3.Harvard Medical SchoolBostonUSA

Personalised recommendations