Advertisement

Superdiffusion in a Model for Diffusion in a Molecularly Crowded Environment

  • Dietrich Stauffer
  • Christian Schulze
  • Dieter W. HeermannEmail author
Original Paper

Abstract

We present a model for diffusion in a molecularly crowded environment. The model consists of random barriers in a percolation network. Random walks in the presence of slowly moving barriers show normal diffusion for long times but anomalous diffusion at intermediate times. The effective exponents for square distance vs time usually are below one at these intermediate times, but they can also be larger than one for high barrier concentrations. Thus, we observe sub- and superdiffusion in a crowded environment.

Keywords

Anomalous diffusion Effective exponents Random walk 

References

  1. 1.
    Pederson, T.: Diffusional protein transport within the nucleus: a message in the medium. Nat. Cell Biol. 2, E73–E74 (2000)CrossRefGoogle Scholar
  2. 2.
    Guthold, M., Zhu, X., Rivetti, C., Yang, G., Thomson, N., Kasas, S., Hansma, H., Smith, B., Hansma, P., Bustamante, C.: Direct observation of one-dimensional diffusion and transcription by Escherichia coli RNA polymerase. Biophys. J. 77, 2284–2294 (1999)Google Scholar
  3. 3.
    Berry, H.: Monte Carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation. Biophys. J. 83, 1891–1901 (2002)CrossRefADSGoogle Scholar
  4. 4.
    Valdez-Taubas, J., Pelham, H.: Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr. Biol. 13, 1636–1640 (2003)CrossRefGoogle Scholar
  5. 5.
    Weiss, M., Elsner, M., Kartberg, F., Nilsson, T.: Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 87, 3518 (2004)CrossRefADSGoogle Scholar
  6. 6.
    Binder, K., Heermann, D.W.: Monte Carlo Simulation in Statistical Physics: An Introduction, 4th edn. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  7. 7.
    Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127 (1990)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Frey, E., Kroy, K.: Brownian motion: a paradigm of soft matter and biological physics. Ann. Phys. (Leipzig) 14, 20 (2005)zbMATHCrossRefADSGoogle Scholar
  9. 9.
    Lindenberg, K., Oshanin, G., Tachiya, M.: Chemical kinetics beyond the textbook: fluctuations, many- particle effects and anomalous dynamics. J. Phys. Condens. Mat. 19, 060301 (2007)Google Scholar
  10. 10.
    Saxton, M.J.: A biological interpretation of transient anomalous subdiffusion. Biophys. J. 92, 1178–1191 (2007)CrossRefADSGoogle Scholar
  11. 11.
    Ratynskaia, S., Rypdal, K., Knapek, C., Khrapak, S., Milovanov, A.V., Ivlev, A., Rasmussen, J.J., Morfill, G.E.: Superdiffusion and Viscoelastic Vortex Flows in a Two-Dimensional Complex Plasma. Phys. Rev. Lett. 96, 105010 (2006)CrossRefADSGoogle Scholar
  12. 12.
    Liu, B., Goree, J.: Superdiffusion in two-dimensional Yukawa liquids. Phys. Rev. E 75, 016405 (2007)CrossRefADSGoogle Scholar
  13. 13.
    Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Taylor & Francis, London (1992)Google Scholar
  14. 14.
    Ruiz-Lorenzo, J.J., Yuste, S.B., Lindenberg, K.: Simulations for trapping reactions with subdiffusive traps and subdiffusive particles. J. Phys. Condens. Mat. 19, 065120 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Dietrich Stauffer
    • 1
  • Christian Schulze
    • 1
  • Dieter W. Heermann
    • 2
    Email author
  1. 1.Institut für Theoretische PhysikUniversität zu KölnKölnGermany
  2. 2.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany

Personalised recommendations