Journal of Biological Physics

, 33:331

From Membrane Pores to Aquaporins: 50 Years Measuring Water Fluxes

  • Mario Parisi
  • Ricardo A. Dorr
  • Marcelo Ozu
  • Roxana Toriano
Original Paper

Abstract

This review focuses on studies of water movement across biological membranes performed over the last 50 years. Different scientific approaches had tried to elucidate such intriguing mechanism, from hypotheses emphasizing the role of the lipid bilayer to the cloning of aquaporins, the ubiquitous proteins described as specific water channels. Pioneering and clarifying biophysical work are reviewed beside results obtained with the help of recent sophisticated techniques, to conclude that great advances in the subject live together with old questions without definitive answers.

Keywords

Water channels Aquaporins Single file Water diffusion Osmotic permeability Water pathway 

References

  1. 1.
    Hohmann, S., Nielsen, S.: Preface. In: Hohmann, S., Nielsen, S. (eds.) Molecular Biology and Physiology of Water and Solute Transport, pp. v–vi. Plenum, New York (2000)Google Scholar
  2. 2.
    Parisi, M., Amodeo, G., Capurro, C., Dorr, R., Ford, P., Toriano, R.: Biophysical properties of epithelial water channels. Biophys. Chem. 68(1–3), 255–263 (1997)CrossRefGoogle Scholar
  3. 3.
    Verkman, A.S.: Water permeability measurement in living cells and complex tissues. J. Membr. Biol. 173(2), 73–87 (2000)CrossRefGoogle Scholar
  4. 4.
    Sidel, V.W., Solomon, A.K.: Entrance of water into human red cells under an osmotic pressure gradient. J. Gen. Physiol. 41(2), 243–257 (1957)CrossRefGoogle Scholar
  5. 5.
    Paganelli, C.V., Solomon, A.K.: The rate of exchange of tritiated water across the human red cell membrane. J. Gen. Physiol. 41(2), 259–277 (1957)CrossRefGoogle Scholar
  6. 6.
    Goldstein, D.A., Solomon, A.K.: Determination of equivalent pore radius for human red cells by osmotic pressure measurement. J. Gen. Physiol. 44, 1–17 (1960)CrossRefGoogle Scholar
  7. 7.
    Zadunaisky, J.A., Parisi, M.N., Montoreano, R.: Effect of antidiuretic hormone on permeability of single muscle fibres. Nature 200, 365–366 (1963)CrossRefADSGoogle Scholar
  8. 8.
    Villegas, R., Villegas, G.M.: Characterization of the membranes in the giant nerve fiber of the squid. J. Gen. Physiol. 43, 73–103 (1960)CrossRefGoogle Scholar
  9. 9.
    Dainty, J., House, C.R.: Unstirred layers in frog skin. J. Physiol. 182(1), 66–78 (1966)Google Scholar
  10. 10.
    Dainty, J., House, C.R.: An examination of the evidence for membrane pores in frog skin. J. Physiol. 185(1), 172–184 (1966)Google Scholar
  11. 11.
    Hanai, T., Haydon, D.A., Redwood, W.R.: The water permeability of artificial bimolecular leaflets: a comparison of radio-tracer and osmotic methods. Ann. NY Acad. Sci. 137(2), 731–739 (1966)CrossRefADSGoogle Scholar
  12. 12.
    Hanai, T., Haydon, D.A.: The permeability to water of bimolecular lipid membranes. J. Theor. Biol. 11(3), 370–382 (1966)CrossRefGoogle Scholar
  13. 13.
    Rosenberg, P.A., Finkelstein, A.: Water permeability of gramicidin a-treated lipid bilayer membranes. J. Gen. Physiol. 72(3), 341–350 (1978)CrossRefGoogle Scholar
  14. 14.
    Finkelstein, A., Andersen, O.S.: The gramicidin A channel: a review of its permeability characteristics with special reference to the single-file aspect of transport. J. Membr. Biol. 59(3), 155–171 (1981)CrossRefGoogle Scholar
  15. 15.
    Urban, B.W., Hladky, S.B., Haydon, D.A.: Ion movements in gramicidin pores. An example of single-file transport. Biochim. Biophys. Acta 602(2), 331–354 (1980)CrossRefGoogle Scholar
  16. 16.
    Chui, S.W., Jakobsson, E., Subramahiam, S., McCammon, J.A.: Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels. Biophys. J. 60, 273–285 (1991)Google Scholar
  17. 17.
    Chui, S.W., Subramahiam, S., Jakobsson, E.: Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. I. Rates and mechanisms of water transport. Biophys. J. 76, 1929–1938 (1999)Google Scholar
  18. 18.
    Muller, J., Kachadorian, W.A., Discala, V.A.: Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells. J. Cell Biol. 85, 83–95 (1980)CrossRefGoogle Scholar
  19. 19.
    Parisi, M., Bourguet, J., Ripoche, P., Chevalier, J.: Simultaneous minute by minute determination of unidirectional and net water fluxes in frog urinary bladder. A reexamination of the two barriers in series hypothesis. Biochim. Biophys. Acta 556(3), 509–523 (1979)CrossRefGoogle Scholar
  20. 20.
    Parisi, M., Bourguet, J.: The single file hypothesis and the water channels induced by antidiuretic hormone. J. Membr. Biol. 71(3), 189–193 (1983)CrossRefGoogle Scholar
  21. 21.
    Hays, R.M., Carvounis, C.P., Franki, N., Levine, S.D.: Water permeation in epithelial tissues: current concepts. In: Bourguet, J., Chevalier, J., Parisi, M., Ripoche, P. (eds.) Hormonal Control of Epithelial Transport, vol 85, pp. 281–288. INSERM, Paris (1979)Google Scholar
  22. 22.
    Levine, S.D., Jacoby, M., Finkelstein, A.: The water permeability of toad urinary bladder. II. The value of Pf/Pd(w) for the antidiuretic hormone-induced water permeation pathway. J. Gen. Physiol. 83(4), 543–61 (1984)CrossRefGoogle Scholar
  23. 23.
    Fushimi, K., Uchida, S., Hara, Y., Hirata, Y., Marumo, F., Sasaki, S.: Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361, 549–552 (1993)CrossRefADSGoogle Scholar
  24. 24.
    Nielsen, S., Chou, C.L., Marples, D., Christensen, E.I., Kishore, B.K., Knepper, M.A.: Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc. Natl. Acad. Sci. USA 92, 1013–1017 (1995)CrossRefADSGoogle Scholar
  25. 25.
    Toriano, R., Ford, P., Rivarola, V., Tamarappoo, B.K., Verkman, A.S., Parisi, M.: Reconstitution of a regulated transepithelial water pathway in cells transfected with AQP2 and an AQP1/2 hybrid containing the AQP2-C-terminus. J. Membr. Biol. 161, 141–149 (1998)CrossRefGoogle Scholar
  26. 26.
    Johnsen, A.H., Nielsen, R.: Enhanced sensitivity to stimulation of sodium transport and cyclic AMP by antidiuretic hormone after Ca2+ depletion of isolated frog skin epithelium. J. Membr. Biol. 69, 137–143 (1982)CrossRefGoogle Scholar
  27. 27.
    Gulyassy, P.F., Edelman, I.S.: Hydrogen ion dependence of the antidiuretic action of vasopressin, oxytocin, and deaminooxytocin. Biochim. Biophys. Acta 102, 185–197 (1965)CrossRefGoogle Scholar
  28. 28.
    Carvounis, C.P., Levine, S.D., Hays, R.M.: pH dependence of water and solute transport in toad urinary bladder. Kidney Int. 15, 513–519 (1979)CrossRefGoogle Scholar
  29. 29.
    Parisi, M., Chevalier, J., Bourguet, J.: Influence of mucosal and serosal pH on antidiuretic action in frog urinary bladder. Am. J. Physiol. 237(6), F483–F489 (1979)Google Scholar
  30. 30.
    Parisi, M., Montoreano, R., Chevalier, J., Bourguet, J.: Cellular pH and water permeability control in frog urinary bladder. A possible action on the water pathway. Biochim. Biophys. Acta 648(2), 267–274 (1981)CrossRefGoogle Scholar
  31. 31.
    Parisi, M., Bourguet, J.: Effects of cellular acidification on ADH-induced intramembrane particle aggregates. Am. J. Physiol. 246(1 Pt 1), C157–C159 (1984)Google Scholar
  32. 32.
    Amodeo, G., Sutka, M., Dorr, R., Parisi, M.: Protoplasmic pH modifies water and solute transfer in Beta vulgaris root vacuoles. J. Membr. Biol. 187(3), 175–184 (2002)CrossRefGoogle Scholar
  33. 33.
    Hedfalk, K., Törnroth-Horsefield, S., Nyblom, M., Johanson, U., Kjellbom, P., Neutze, R.: Aquaporin gating. Curr. Opin. Struct. Biol. 16(4), 447–456 (2006)CrossRefGoogle Scholar
  34. 34.
    Chaumont, F., Moshelion, M., Daniels, M.J.: Regulation of plant aquaporin activity. Biol. Cell 97(10), 749–764 (2005)CrossRefGoogle Scholar
  35. 35.
    Macey, R.I.: Transport of water and urea in red blood cells. Am. J. Physiol. 246, C195–C203 (1984)Google Scholar
  36. 36.
    Solomon, A.K., Chasan, B., Dix, J.A., Lukacovic, M.F., Toon, M.R., Verkman, A.S.: The aqueous pore in the red cell membrane: band 3 as a channel for anions, cations, nonelectrolytes, and water. Ann. NY Acad. Sci. 414, 79–124 (1984)Google Scholar
  37. 37.
    Verkman, A.S., Weyer, P., Brown, D., Ausiello, D.A.: Functional water channels are present in clathrin-coated vesicles from bovine kidney but not from brain. J. Biol. Chem. 264, 20608–20613 (1989)Google Scholar
  38. 38.
    Meyer, M.M., Verkman, A.S.: Evidence for water channels in renal proximal tubule cell membranes. J. Membr. Biol. 96, 107–119 (1987)CrossRefGoogle Scholar
  39. 39.
    Whittembury, G., Carpi-Medina, P., Gonzalez, E., Linares, H.: Effect of para-chloromercuribenzenesulfonic acid and temperature on cell water osmotic permeability of proximal straight tubules. Biochim. Biophys. Acta 775(3), 365–373 (1984)CrossRefGoogle Scholar
  40. 40.
    Ye, R., Shi, L.B., Lencer, W., Verkman, A.S.: Functional colocalization of water channels and proton pumps in endosomes from kidney proximal tubule. J. Gen. Physiol. 93, 885–902 (1989)CrossRefGoogle Scholar
  41. 41.
    Al-Zahid, G., Schafer, J.A., Troutman, S.L., Andreoli, T.E.: Effect of antidiuretic hormone on water and solute permeation, and the activation energies for these processes, in mammalian cortical collecting tubules: evidence for parallel ADH-sensitive pathways for water and solute diffusion in luminal plasma membranes. J. Membr. Biol. 31, 103–129 (1977)CrossRefGoogle Scholar
  42. 42.
    Verkman, A.S., Lencer, W.I., Brown, D., Ausiello, D.A.: Endosomes from kidney collecting tubule cells contain the vasopressin-sensitive water channel. Nature 333, 268–269 (1988)CrossRefADSGoogle Scholar
  43. 43.
    Brown, D.: Membrane recycling and epithelial cell function. Am. J. Physiol. 256, F1–F12 (1989)ADSGoogle Scholar
  44. 44.
    Zhang, R., Logee, K.A., Verkman, A.S.: Expression of mRNA coding for kidney and red cell water channels in Xenopus oocytes. J. Biol. Chem. 265(26), 15375–15378 (1990)Google Scholar
  45. 45.
    Preston, G.M., Carroll, T.P., Guggino, W.B., Agre, P.: Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256(5055), 385–387 (1992)CrossRefADSGoogle Scholar
  46. 46.
    Parisi, M., Bourguet, J.: Water channels in animal cells: a widespread structure? Biol. Cell. 55(3), 155–157 (1985)Google Scholar
  47. 47.
    Agre, P.: Nobel Lecture. Aquaporin water channels. Biosci. Rep. 24(3), 127–163 (2004)CrossRefGoogle Scholar
  48. 48.
    King, L.S., Kozono, D., Agre, P.: From structure to disease: the evolving tale of aquaporin biology. Nat. Rev. Mol. Cell Biol. 5, 687–698 (2004)CrossRefGoogle Scholar
  49. 49.
    Takata, K., Matsuzaki, T., Tajika, Y.: Aquaporins: water channel proteins of the cell membrane. Prog. Histochem. Cytochem. 39, 1–83 (2004)CrossRefGoogle Scholar
  50. 50.
    Zampighi, G.A., Kreman, M., Boorer, K.J., Loo, D.D., Bezanilla, F., Chandy, G., Hall, J.E., Wright, E.M.: A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes. J. Membr. Biol. 148(1), 65–78 (1995)Google Scholar
  51. 51.
    Mulders, S.M., Preston, G., Deen, P., Guggino, W., Van Os, C., Agre, P.: Water channel properties of major intrinsic protein of lens. J. Biol. Chem. 270, 9010–9016 (1995)CrossRefGoogle Scholar
  52. 52.
    Engel, A., Fujiyoshi, Y., Gonen, T., Walz, T.: Junction-forming aquaporins. Curr. Opin. Struct. Biol. 2008 Jan 12 [Epub ahead of print] In pressGoogle Scholar
  53. 53.
    Han, B.G., Guliaev, A.B., Walian, P.J., Jap, B.K.: Water transport in AQP0 aquaporin: molecular dynamics studies. J. Mol. Biol. 360(2), 285–96 (2006)CrossRefGoogle Scholar
  54. 54.
    Verkman, A.S., Mitra, A.K.: Structure and function of aquaporin water channels. Am. J. Physiol. 278, F13–F28 (2000)Google Scholar
  55. 55.
    Jung, J.S., Preston, G.M., Smith, B.L., Guggino, W.B., Agre, P.: Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J. Biol. Chem. 269, 14648–14654 (1994)Google Scholar
  56. 56.
    Smith, B.L., Agre, P.: Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J. Biol. Chem. 266, 6407–6415 (1991)Google Scholar
  57. 57.
    Walz, T., Smith, B.L., Zeidel, M.L., Engel, A., Agre, P.: Biologically active two-dimensional crystals of aquaporin CHIP. J. Biol. Chem. 269, 1583–1586 (1994)Google Scholar
  58. 58.
    Mathai, J.C., Agre, P.: Hourglass pore-forming domains restrict aquaporin-1 tetramer assembly. Biochemistry 38, 923–928 (1999)CrossRefGoogle Scholar
  59. 59.
    Neely, J.D., Christensen, B.M., Nielsen, S., Agre, P.: Heterotetrameric composition of aquaporin-4 water channels. Biochemistry 38, 11156–11163 (1999)CrossRefGoogle Scholar
  60. 60.
    Preston, G.M., Jung, J.S., Guggino, W.B., Agre, P.: The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J. Biol. Chem. 268, 17–20 (1993)Google Scholar
  61. 61.
    Walz, T., Hirai, T., Murata, K., Heymann, J.B., Mitsuoka, K., Fujiyoshi, Y., Smith, B.L., Agre, P., Engel, A.: The three-dimensional structure of aquaporin-1. Nature 387, 624–627 (1997)CrossRefADSGoogle Scholar
  62. 62.
    Cheng, A., van Hoek, A.N., Yeager, M., Verkman, A.S., Mitra, A.K.: Three-dimensional organization of a human water channel. Nature 387, 627–630 (1997)CrossRefADSGoogle Scholar
  63. 63.
    Mitsuoka, K., Murata, K., Walz, T., Hirai, T., Agre, P., Heymann, J.B., Engel, A., Fujiyoshi, Y.: The structure of aquaporin-1 at 4.5-Å resolution reveals short alpha-helices in the center of the monomer. J. Struct. Biol. 128, 34–43 (1999)CrossRefGoogle Scholar
  64. 64.
    Ren, G., Cheng, A., Reddy, V., Melnyk, P., Mitra, A.K.: Three-dimensional fold of the human AQP1 water channel determined at 4 Å resolution by electron crystallography of two-dimensional crystals embedded in ice. J. Mol. Biol. 301, 369–387 (2000)CrossRefGoogle Scholar
  65. 65.
    Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J.B., Engel, A., Fujiyoshi, Y.: Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000)CrossRefADSGoogle Scholar
  66. 66.
    Fu, D., Libson, A., Miercke, L.J.W., Weitzman, C., Nollert, P., Krucinski, J., Stroud, R.M.: Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486 (2000)CrossRefADSGoogle Scholar
  67. 67.
    Sui, H., Han, B.G., Lee, J.K., Walian, P., Jap, B.K.: Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878 (2001)CrossRefADSGoogle Scholar
  68. 68.
    de Groot, B.L., Grubmüller, H.: Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294, 2353–2357 (2001)CrossRefADSGoogle Scholar
  69. 69.
    Agre, P., Lee, M.D., Devidas, S., Guggino, W.B.: Aquaporins and ion conductance. Science 275, 1490–1492 (1997)CrossRefGoogle Scholar
  70. 70.
    Tsunoda, S.P., Wiesner, B., Lorenz, D., Rosenthal, W., Pohl, P.: Aquaporin-1, nothing but a water channel. J. Biol. Chem. 279, 11364–11367 (2004)CrossRefGoogle Scholar
  71. 71.
    Jensen, M.Ø., Tajkhorshid, E., Schulten, K.: Electrostatic tuning of permeation and selectivity in aquaporin water channels. Biophys. J. 85, 2884–2899 (2003)ADSGoogle Scholar
  72. 72.
    Burykin, A., Warshel, A.: What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals. Biophys. J. 85, 3696–3706 (2003)ADSGoogle Scholar
  73. 73.
    de Groot, B.L., Engel, A., Grubmüller, H.: The structure of the aquaporin-1 water channel: a comparison between cryo-electron microscopy and X-ray crystallography. J. Mol. Biol. 325, 485–493 (2003)CrossRefGoogle Scholar
  74. 74.
    Chakrabarti, N., Roux, B., Pomès, R.: Structural determinants of proton blockage in aquaporins. J. Mol. Biol. 343, 493–510 (2004)CrossRefGoogle Scholar
  75. 75.
    Yang, B., Song, Y., Zhao, D., Verkman, A.S.: Phenotype analysis of aquaporin-8 null mice. Am. J. Physiol. Cell. Physiol. 288, C1161–C1170 (2005)CrossRefGoogle Scholar
  76. 76.
    Wang, K.S., Ma, T., Filiz, F., Verkman, A.S., Bastidas, J.A.: Colon water transport in transgenic mice lacking aquaporin-4 water channels. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G463–G670 (2000)Google Scholar
  77. 77.
    Toriano, R., Kierbel, A., Ramirez, M.A., Malnic, G., Parisi, M.: Spontaneous water secretion in T84 cells: effects of STa enterotoxin, bumetanide, VIP, forskolin, and A-23187. Am. J. Physiol. Gastrointest. Liver Physiol. 281, 816–822 (2001)Google Scholar
  78. 78.
    Capurro, C., Rivarola, V., Kierbel, A., Escoubet, B., Farman, N., Blot-Chabaud, M., Parisi, M.: Vasopressin regulates water flow in a rat cortical collecting duct cell line not containing known aquaporins. J. Membr. Biol. 179, 63–70 (2001)CrossRefGoogle Scholar
  79. 79.
    Chara, O., Ford, P., Rivarola, V., Parisi, M., Capurro, C.: Asymmetry in the osmotic response of a rat cortical collecting duct cell line: role of aquaporin-2. J. Membr. Biol. 207, 143–150 (2005)CrossRefGoogle Scholar
  80. 80.
    Hill, A.E., Shachar-Hill, B., Shachar-Hill, Y.: What are aquaporins for? J. Membr. Biol. 197, 1–32 (2004)CrossRefGoogle Scholar
  81. 81.
    Fischbarg, J., Diecke, F.P., Iserovich, P., Rubashkin, A.: The role of the tight junction in paracellular fluid transport across corneal endothelium. Electro-osmosis as a driving force. J. Membr. Biol. 210(2), 117–130 (2006)CrossRefGoogle Scholar
  82. 82.
    Agre, P., Nielsen, S., Ottersen, O.P.: Towards a molecular understanding of water homeostasis in the brain. Neuroscience 12, 849–850 (2004)CrossRefGoogle Scholar
  83. 83.
    Agre, P., King, L.S., Yasui, M., Guggino, W.B., Ottersen, O.P., Fujiyoshi, Y., Engel, A., Nielsen, S.: Aquaporin water channels: from atomic structure to clinical medicine. J. Physiol. 542, 3–16 (2002)CrossRefGoogle Scholar
  84. 84.
    MacAulay, N., Hamann, S., Zeuthen, T.: Water transport in the brain: role of cotransporters. Neuroscience 129, 1031–1044 (2004)CrossRefGoogle Scholar
  85. 85.
    Gagnon, M.P., Bissonnette, P., Deslandes, L.M., Wallendorff, B., Lapointe, J.Y.: Glucose accumulation can account for the initial water flux triggered by Na+/glucose cotransport. Biophys. J. 86, 125–133 (2004)Google Scholar
  86. 86.
    Duquette, P.P., Bisonnette, P., Lapointe, J.Y.: Local osmotic gradients drive the water flux associated with Na+/glucose cotransport. Proc. Natl. Acad. Sci. USA 98, 3796–3801 (2001)CrossRefADSGoogle Scholar
  87. 87.
    Charron, F.M., Blanchard, M.G., Lapointe, J.Y.: Intracellular hypertonicity is responsible for water flux associated with Na+/glucose cotransport. Biophys. J. 90, 3546–3554 (2006)CrossRefADSGoogle Scholar
  88. 88.
    Fischbarg, J., Kunyan, K., Vera, J.C., Arant, S., Silverstein, S., Loike, J., Rosen, O.M.: Glucose transporters serve as water channels. Proc. Natl. Acad. Sci. USA 87, 3244–3247 (1990)CrossRefADSGoogle Scholar
  89. 89.
    Iserovich, P., Wang, D., Ma, L., Zuniga, F.A., Pascual, J.M., Kuang, K., De Vivo, D.C., Fischbarg, J.: Changes in glucose transport and water permeability resulting from the T310I pathogenic mutation in Glut1 are consistent with two transport channels per monomer. J. Biol. Chem. 277, 30991–30997 (2002)CrossRefGoogle Scholar
  90. 90.
    Zeuthen, T., Zeuthen, E., MacAulay, N.: Water transport by GLUT2 expressed in Xenopus laevis oocytes. J. Physiol. 579, 345–361 (2007)CrossRefGoogle Scholar
  91. 91.
    Loo, D.D., Hirayama, B.A., Meinild, A.K., Chandy, G., Zeuthen, T., Wright, E.M.: Passive water and ion transport by cotransporter. J. Physiol. 518, 195–202 (1999)CrossRefGoogle Scholar
  92. 92.
    Zeuthen, T., Belhage, B., Zeuthen, E.: Water transport by Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS). The dependence of substrate size studied at high resolution. J. Physiol. 570, 485–499 (2006)CrossRefGoogle Scholar
  93. 93.
    Ma, T., Frigeri, A., Tsai, S.T., Verbavatz, J.M., Verkman, A.S.: Localization and functional analysis of CHIP28k water channels in stably transfected CHO cells. J. Biol. Chem. 268, 22756–22764 (1993)Google Scholar
  94. 94.
    Farinas, J., Simenak, V., Verkman, A.S.: Cell volume measured in adherent cells by total internal reflection microfluorimetry: application to permeability in cells transfected with water channel homologs. Biophys. J. 68, 1613–1620 (1995)Google Scholar
  95. 95.
    Farinas, J., Verkman, A.S.: Measurement of cell volume and water permeability in epithelial cell layers by interferometry. Biophys. J. 71, 3511–3522 (1996)CrossRefADSGoogle Scholar
  96. 96.
    Farinas, J., Kneen, M., Moore, M., Verkman, A.S.: Plasma membrane water permeability of cultured cells and epithelia measured by light microscopy with spatial filtering. J. Gen. Physiol. 110, 283–296 (1997)CrossRefGoogle Scholar
  97. 97.
    Dorr, R.A., Kierbel, A., Vera, J., Parisi, M.: A new data-acquisition system for the measurement of the net water flux across epithelia. Comput. Methods Programs Biomed. 53(1), 9–14 (1997)CrossRefGoogle Scholar
  98. 98.
    Dorr, R., Ozu, M., Parisi, M.: Simple and inexpensive hardware and software method to measure volume changes in Xenopus oocytes expressing aquaporins. J. Neurosci. Methods 161(2), 301–5 (2007)CrossRefGoogle Scholar
  99. 99.
    Ozu, M., Dorr, R., Parisi, M.: New method to measure water permeability in emptied-out Xenopus oocytes controlling conditions on both sides of the membrane. J. Biochem. Biophys. Methods 63(3), 187–200 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Mario Parisi
    • 1
  • Ricardo A. Dorr
    • 2
  • Marcelo Ozu
    • 1
  • Roxana Toriano
    • 2
  1. 1.Unidad de BiomembranasUniversidad FavaloroBuenos AiresArgentina
  2. 2.Laboratorio de Biomembranas, Departamento de Fisiología, Facultad de MedicinaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations