Journal of Biological Physics

, Volume 34, Issue 1–2, pp 135–148 | Cite as

Infection Spreading in a Population with Evolving Contacts

Original Paper

Abstract

We study the spreading of an infection within an SIS epidemiological model on a network. Susceptible agents are given the opportunity of breaking their links with infected agents. Broken links are either permanently removed or reconnected with the rest of the population. Thus, the network coevolves with the population as the infection progresses. We show that a moderate reconnection frequency is enough to completely suppress the infection. A partial, rather weak isolation of infected agents suffices to eliminate the endemic state.

Keywords

SIS epidemics Agent-based models Evolving networks 

References

  1. 1.
    Hatchett, R.J., Mecher, C.E., Lipsitch, M.: Public health interventions and epidemic intensity during the 1918 influenza pandemic. Proc. Natl. Acad. Sci. U. S. A. 104, 7582–7587 (2007)CrossRefADSGoogle Scholar
  2. 2.
    Bootsma, M.C., Ferguson, N.M.: The effect of public health measures on the 1918 influenza pandemic in U.S. cities. Proc. Natl. Acad. Sci. U. S. A. 104, 7588–7593 (2007)CrossRefADSGoogle Scholar
  3. 3.
    Hurst, C.J.: Modeling Disease Transmission and Its Prevention by Disinfection. Cambridge University Press, Cambridge (1996)Google Scholar
  4. 4.
    Pastor Satorras, R., Rubi, M., Díaz Guilera, A.: Statistical Mechanics of Complex Networks. Springer, Berlin (2003)MATHGoogle Scholar
  5. 5.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, New York (2007)Google Scholar
  6. 6.
    Zimmermann, M.G., Eguíluz, V.M., San Miguel, M.: Coevolution of dynamical states and interactions in dynamic networks. Phys. Rev. E 69, 065102R (2004)CrossRefADSGoogle Scholar
  7. 7.
    Stauffer, D., Hohnisch, M., Pittnauer, S.: The coevolution of individual economic characteristics and socioeconomic networks. Physica A 370, 734–740 (2006)CrossRefADSGoogle Scholar
  8. 8.
    Gil, S., Zanette, D.H.: Coevolution of agents and networks: opinion spreading and community disconnection. Phys. Lett. A 356, 89–94 (2006)MATHCrossRefADSGoogle Scholar
  9. 9.
    Zanette, D.H., Gil, S.: Opinion spreading and agent segregation on evolving networks. Physica D 224, 156–165 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Holme, P., Newman, M.E.J.: Nonequilibrium phase transition in the coevolution of networks and opinions. Phys. Rev. E 74, 056108 (2006)CrossRefADSGoogle Scholar
  11. 11.
    Gross, T., Dommar D’Lima, C., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006)CrossRefADSGoogle Scholar
  12. 12.
    An example is explicitly analyzed in Anderson, R.M., May, R.M., Anderson, B.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Cambridge (1992)Google Scholar
  13. 13.
    Bagnoli, F., Liò, P., Sguanci, L.: Risk perception in epidemic modeling. Phys. Rev. E 76, 061904 (2007)CrossRefADSGoogle Scholar
  14. 14.
    Levin, S.A., Durrett, R.: From individuals to epidemics. Phil. Trans. R. Soc. Lond. B 351, 1615–1621 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  1. 1.Consejo Nacional de Investigaciones Científicas y TécnicasCentro Atómico Bariloche and Instituto BalseiroSan Carlos de BarilocheArgentina

Personalised recommendations