Journal of Biological Physics

, Volume 33, Issue 5–6, pp 357–370 | Cite as

Influence of Distal Residue B10 on CO Dynamics in Myoglobin and Neuroglobin

Original Paper


For many years, myoglobin has served as a paradigm for structure–function studies in proteins. Ligand binding and migration within myoglobin has been studied in great detail by crystallography and spectroscopy, showing that gaseous ligands such as O2, CO, and NO not only bind to the heme iron but may also reside transiently in three internal ligand docking sites, the primary docking site B and secondary sites C and D. These sites affect ligand association and dissociation in specific ways. Neuroglobin is another vertebrate heme protein that also binds small ligands. Ligand migration pathways in neuroglobin have not yet been elucidated. Here, we have used Fourier transform infrared temperature derivative spectroscopy at cryogenic temperatures to compare the influence of the side chain volume of amino acid residue B10 on ligand migration to and rebinding from docking sites in myoglobin and neuroglobin.


Fourier transform infrared spectroscopy Ligand migration Myoglobin Neuroglobin Temperature derivative spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hardison, R.C.: A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc. Natl. Acad. Sci. U. S. A. 93, 5675–5679 (1996)CrossRefADSGoogle Scholar
  2. 2.
    Weber, R.E., Vinogradov, S.N.: Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol. Rev. 81, 569–628 (2001)Google Scholar
  3. 3.
    Bisig, D.A., Di Iorio, E.E., Diederichs, K., Winterhalter, K.H., Piontek, K.: Crystal structure of Asian elephant (Elephas maximus) cyano-metmyoglobin at 1.78-A resolution. Phe29(B10) accounts for its unusual ligand binding properties. J. Biol. Chem. 270, 20754–20762 (1995)CrossRefGoogle Scholar
  4. 4.
    Olson, J.S., Mathews, A.J., Rohlfs, R.J., Springer, B.A., Egeberg, K.D., Sligar, S.G., Tame, J., Renaud, J.P., Nagai, K.: The role of the distal histidine in myoglobin and haemoglobin. Nature 336, 265–266 (1988)CrossRefADSGoogle Scholar
  5. 5.
    Olson, J.S., Phillips Jr., G.N.: Kinetic pathways and barriers for ligand binding to myoglobin. J. Biol. Chem. 271, 17593–17596 (1996)CrossRefGoogle Scholar
  6. 6.
    Wittenberg, J.B., Bolognesi, M., Wittenberg, B.A., Guertin, M.: Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J. Biol. Chem. 277, 871–874 (2002)CrossRefGoogle Scholar
  7. 7.
    Gardner, P.R., Gardner, A.M., Martin, L.A., Salzman, A.L.: Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. U. S. A. 95, 10378–10383 (1998)CrossRefADSGoogle Scholar
  8. 8.
    Arredondo-Peter, R., Hargrove, M.S., Moran, J.F., Sarath, G., Klucas, R.V.: Plant hemoglobins. Plant Physiol. 118, 1121–1125 (1998)CrossRefGoogle Scholar
  9. 9.
    Smagghe, B.J., Kundu, S., Hoy, J.A., Halder, P., Weiland, T.R., Savage, A., Venugopal, A., Goodman, M., Premer, S., Hargrove, M.S.: Role of phenylalanine B10 in plant nonsymbiotic hemoglobins. Biochemistry 45, 9735–9745 (2006)CrossRefGoogle Scholar
  10. 10.
    Burmester, T., Weich, B., Reinhardt, S., Hankeln, T.: A vertebrate globin expressed in the brain. Nature 407, 520–523 (2000)CrossRefADSGoogle Scholar
  11. 11.
    Burmester, T., Ebner, B., Weich, B., Hankeln, T.: Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol. Biol. Evol. 19, 416–421 (2002)Google Scholar
  12. 12.
    Austin, R.H., Beeson, K.W., Eisenstein, L., Frauenfelder, H., Gunsalus, I.C.: Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373 (1975)CrossRefGoogle Scholar
  13. 13.
    Nienhaus, G.U., Heinzl, J., Huenges, E., Parak, F.: Protein crystal dynamics studied by time-resolved analysis of X-ray diffuse scattering. Nature 338, 665–666 (1989)CrossRefADSGoogle Scholar
  14. 14.
    Frauenfelder, H., Nienhaus, G.U., Johnson, J.B.: Rate processes in proteins. Ber. Bunsenges. Phys. Chem. 95, 272–278 (1991)Google Scholar
  15. 15.
    Parak, F.G., Nienhaus, G.U.: Myoglobin, a paradigm in the study of protein dynamics. Chem. Phys. Chem. 3, 249–254 (2002)Google Scholar
  16. 16.
    Samuni, U., Dantsker, D., Roche, C.J., Friedman, J.M.: Ligand recombination and a hierarchy of solvent slaved dynamics: the origin of kinetic phases in hemeproteins. Gene 398, 234–248 (2007)CrossRefGoogle Scholar
  17. 17.
    Parak, F., Frolov, E.N., Mössbauer, R.L., Goldanskii, V.I.: Dynamics of metmyoglobin crystals investigated by nuclear gamma resonance absorption. J. Mol. Biol. 145, 825–833 (1981)CrossRefGoogle Scholar
  18. 18.
    Parak, F., Knapp, E.W., Kucheida, D.: Protein dynamics. Mössbauer spectroscopy on deoxymyoglobin crystals. J. Mol. Biol. 161, 177–194 (1982)CrossRefGoogle Scholar
  19. 19.
    Nienhaus, G.U., Mourant, J.R., Chu, K., Frauenfelder, H.: Ligand binding to heme proteins: the effect of light on ligand binding in myoglobin. Biochemistry 33, 13413–13430 (1994)CrossRefGoogle Scholar
  20. 20.
    Nienhaus, G.U., Nienhaus, K.: Infrared study of carbon monoxide migration among internal cavities of myoglobin mutant L29W. J. Biol. Phys. 28, 163–172 (2002)CrossRefGoogle Scholar
  21. 21.
    Nienhaus, K., Deng, P., Kriegl, J.M., Nienhaus, G.U.: Structural dynamics of myoglobin: The effect of internal cavities on ligand migration and binding. Biochemistry 42, 9647–9658 (2003)CrossRefGoogle Scholar
  22. 22.
    Scott, E.E., Gibson, Q.H.: Ligand migration in sperm whale myoglobin. Biochemistry 36, 11909–11917 (1997)CrossRefGoogle Scholar
  23. 23.
    Scott, E.E., Gibson, Q.H., Olson, J.S.: Mapping the pathways for O2 entry into and exit from myoglobin. J. Biol. Chem. 276, 5177–5188 (2001)CrossRefGoogle Scholar
  24. 24.
    Bourgeois, D., Vallone, B., Schotte, F., Arcovito, A., Miele, A.E., Sciara, G., Wulff, M., Anfinrud, P., Brunori, M.: Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography. Proc. Natl. Acad. Sci. U. S. A. 100, 8704–8709 (2003)CrossRefADSGoogle Scholar
  25. 25.
    Hartmann, H., Zinser, S., Komninos, P., Schneider, R.T., Nienhaus, G.U., Parak, F.: X-ray structure determination of a metastable state of carbonmonoxy myoglobin after photodissociation. Proc. Natl. Acad. Sci. U. S. A. 93, 7013–7016 (1996)CrossRefADSGoogle Scholar
  26. 26.
    Ostermann, A., Waschipky, R., Parak, F.G., Nienhaus, G.U.: Ligand binding and conformational motions in myoglobin. Nature 404, 205–208 (2000)CrossRefADSGoogle Scholar
  27. 27.
    Schlichting, I., Berendzen, J., Phillips Jr., G.N., Sweet, R.M.: Crystal structure of photolysed carbonmonoxy-myoglobin. Nature 371, 808–812 (1994)CrossRefADSGoogle Scholar
  28. 28.
    Schmidt, M., Nienhaus, K., Pahl, R., Krasselt, A., Anderson, S., Parak, F., Nienhaus, G.U., Srajer, V.: Ligand migration pathway and protein dynamics in myoglobin: a time-resolved crystallographic study on L29W MbCO. Proc. Natl. Acad. Sci. U. S. A. 102, 11704–11709 (2005)CrossRefADSGoogle Scholar
  29. 29.
    Schotte, F., Lim, M., Jackson, T.A., Smirnov, A.V., Soman, J., Olson, J.S., Phillips Jr., G.N., Wulff, M., Anfinrud, P.A.: Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science 300, 1944–1947 (2003)CrossRefADSGoogle Scholar
  30. 30.
    Teng, T.Y., Srajer, V., Moffat, K.: Photolysis-induced structural changes in single crystals of carbonmonoxy myoglobin at 40 K. Nat. Struct. Biol. 1, 701–705 (1994)CrossRefGoogle Scholar
  31. 31.
    Perutz, M.F.: Myoglobin and haemoglobin: role of distal residues in reactions with haem ligands. Trends Biochem. Sci. 14, 42–44 (1989)CrossRefGoogle Scholar
  32. 32.
    Johnson, K.A., Olson, J.S., Phillips Jr., G.N.: Structure of myoglobin-ethyl isocyanide. Histidine as a swinging door for ligand entry. J. Mol. Biol. 207, 459–463 (1989)CrossRefGoogle Scholar
  33. 33.
    Tilton Jr., R.F., Kuntz Jr., I.D., Petsko, G.A.: Cavities in proteins: structure of a metmyoglobin-xenon complex solved to 1.9 Å. Biochemistry 23, 2849–2857 (1984)CrossRefGoogle Scholar
  34. 34.
    Gibson, Q.H., Regan, R., Elber, R., Olson, J.S., Carver, T.E.: Distal pocket residues affect picosecond ligand recombination in myoglobin. An experimental and molecular dynamics study of position 29 mutants. J. Biol. Chem. 267, 22022–22034 (1992)Google Scholar
  35. 35.
    Schotte, F., Soman, J., Olson, J.S., Wulff, M., Anfinrud, P.A.: Picosecond time-resolved X-ray crystallography: probing protein function in real time. J. Struct. Biol. 147, 235–246 (2004)CrossRefGoogle Scholar
  36. 36.
    Li, T., Quillin, M.L., Phillips Jr., G.N., Olson, J.S.: Structural determinants of the stretching frequency of CO bound to myoglobin. Biochemistry 33, 1433–1446 (1994)CrossRefGoogle Scholar
  37. 37.
    Nienhaus, K., Deng, P., Kriegl, J.M., Nienhaus, G.U.: Structural dynamics of myoglobin: Spectroscopic and structural characterization of ligand docking sites in myoglobin mutant L29W. Biochemistry 42, 9633–9646 (2003)CrossRefGoogle Scholar
  38. 38.
    Brunori, M., Cutruzzola, F., Savino, C., Travaglini-Allocatelli, C., Vallone, B., Gibson, Q.H.: Structural dynamics of ligand diffusion in the protein matrix: A study on a new myoglobin mutant Y(B10) Q(E7) R(E10). Biophys. J. 76, 1259–1269 (1999)Google Scholar
  39. 39.
    Nienhaus, K., Ostermann, A., Nienhaus, G.U., Parak, F.G., Schmidt, M.: Ligand migration and protein fluctuations in myoglobin mutant L29W. Biochemistry 44, 5095–5105 (2005)CrossRefGoogle Scholar
  40. 40.
    Brunori, M., Vallone, B., Cutruzzola, F., Travaglini-Allocatelli, C., Berendzen, J., Chu, K., Sweet, R.M., Schlichting, I.: The role of cavities in protein dynamics: crystal structure of a photolytic intermediate of a mutant myoglobin. Proc. Natl. Acad. Sci. U. S. A. 97, 2058–2063 (2000)CrossRefADSGoogle Scholar
  41. 41.
    Kriegl, J.M., Bhattacharyya, A.J., Nienhaus, K., Deng, P., Minkow, O., Nienhaus, G.U.: Ligand binding and protein dynamics in neuroglobin. Proc. Natl. Acad. Sci. U. S. A. 99, 7992–7997 (2002)CrossRefADSGoogle Scholar
  42. 42.
    Nienhaus, K., Kriegl, J.M., Nienhaus, G.U.: Structural dynamics in the active site of murine neuroglobin and its effects on ligand binding. J. Biol. Chem. 279, 22944–22952 (2004)CrossRefGoogle Scholar
  43. 43.
    Vallone, B., Nienhaus, K., Brunori, M., Nienhaus, G.U.: The structure of murine neuroglobin: novel pathways for ligand migration and binding. Proteins 56, 85–92 (2004)CrossRefGoogle Scholar
  44. 44.
    Vallone, B., Nienhaus, K., Matthes, A., Brunori, M., Nienhaus, G.U.: The structure of carbonmonoxy neuroglobin reveals a heme-sliding mechanism for control of ligand affinity. Proc. Natl. Acad. Sci. U. S. A. 101, 17351–17356 (2004)CrossRefADSGoogle Scholar
  45. 45.
    Nienhaus, G.U., Chu, K., Jesse, K.: Structural heterogeneity and ligand binding in carbonmonoxy myoglobin crystals at cryogenic temperatures. Biochemistry 37, 6819–6823 (1998)CrossRefGoogle Scholar
  46. 46.
    Alben, J.O., Beece, D., Bowne, S.F., Doster, W., Eisenstein, L., Frauenfelder, H., Good, D., McDonald, J.D., Marden, M.C., Moh, P.P., Reinisch, L., Reynolds, A.H., Shyamsunder, E., Yue, K.T.: Infrared spectroscopy of photodissociated carboxymyoglobin at low temperatures. Proc. Natl. Acad. Sci. U. S. A. 79, 3744–3748 (1982)CrossRefADSGoogle Scholar
  47. 47.
    Yang, F., Phillips Jr., G.N.: Crystal structures of CO-, deoxy- and met-myoglobins at various pH values. J. Mol. Biol. 256, 762–774 (1996)CrossRefGoogle Scholar
  48. 48.
    Vojtechovsky, J., Chu, K., Berendzen, J., Sweet, R.M., Schlichting, I.: Crystal structures of myoglobin-ligand complexes at near-atomic resolution. Biophys. J. 77, 2153–2174 (1999)Google Scholar
  49. 49.
    Lim, M., Jackson, T.A., Anfinrud, P.A.: Ultrafast rotation and trapping of carbon monoxide dissociated from myoglobin. Nat. Struct. Biol. 4, 209–214 (1997)CrossRefGoogle Scholar
  50. 50.
    Kriegl, J.M., Nienhaus, K., Deng, P., Fuchs, J., Nienhaus, G.U.: Ligand dynamics in a protein internal cavity. Proc. Natl. Acad. Sci. U. S. A. 100, 7069–7074 (2003)CrossRefADSGoogle Scholar
  51. 51.
    Lehle, H., Kriegl, J.M., Nienhaus, K., Deng, P., Fengler, S., Nienhaus, G.U.: Probing electric fields in protein cavities by using the vibrational Stark effect of carbon monoxide. Biophys. J. 88, 1978–1990 (2005)CrossRefGoogle Scholar
  52. 52.
    Nienhaus, K., Olson, J.S., Franzen, S., Nienhaus, G.U.: The origin of Stark splitting in the initial photoproduct state of MbCO. J. Am. Chem. Soc. 127, 40–41 (2005)CrossRefGoogle Scholar
  53. 53.
    Springer, B.A., Sligar, S.G.: High-level expression of sperm whale myoglobin in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 84, 8961–8965 (1987)CrossRefADSGoogle Scholar
  54. 54.
    Nienhaus, K., Lamb, D.C., Deng, P., Nienhaus, G.U.: The effect of ligand dynamics on heme electronic transition band III in myoglobin. Biophys. J. 82, 1059–1067 (2002)Google Scholar
  55. 55.
    Young, R.D., Frauenfelder, H., Johnson, J.B., Lamb, D.C., Nienhaus, G.U., Phillip, R., Scholl, R.: Time- and temperature dependence of large-scale conformational transitions in myoglobin. Chem. Phys. 158, 315–328 (1991)CrossRefGoogle Scholar
  56. 56.
    Johnson, J.B., Lamb, D.C., Frauenfelder, H., Müller, J.D., McMahon, B., Nienhaus, G.U., Young, R.D.: Ligand binding to heme proteins. VI. Interconversion of taxonomic substates in carbonmonoxymyoglobin. Biophys. J. 71, 1563–1573 (1996)CrossRefADSGoogle Scholar
  57. 57.
    Parak, F., Heidemeier, J., Nienhaus, G.U.: Protein structural dynamics as determined by Mössbauer spectroscopy. Hyperfine Interact. 40, 147–158 (1988)CrossRefADSGoogle Scholar
  58. 58.
    Chu, K., Ernst, R.M., Frauenfelder, H., Mourant, J.R., Nienhaus, G.U., Philipp, R.: Light-induced and thermal relaxation in a protein. Phys. Rev. Lett. 74, 2607–2610 (1995)CrossRefADSGoogle Scholar
  59. 59.
    Berendzen, J., Braunstein, D.: Temperature-derivative spectroscopy: a tool for protein dynamics. Proc. Natl. Acad. Sci. U. S. A. 87, 1–5 (1990)CrossRefADSGoogle Scholar
  60. 60.
    Mourant, J.R., Braunstein, D.P., Chu, K., Frauenfelder, H., Nienhaus, G.U., Ormos, P., Young, R.D.: Ligand binding to heme proteins: II. Transitions in the heme pocket of myoglobin. Biophys. J. 65, 1496–1507 (1993)Google Scholar
  61. 61.
    Ehrenstein, D., Nienhaus, G.U.: Conformational substates in azurin. Proc. Natl. Acad. Sci. U. S. A. 89, 9681–9685 (1992)CrossRefADSGoogle Scholar
  62. 62.
    Lamb, D.C., Nienhaus, K., Arcovito, A., Draghi, F., Miele, A.E., Brunori, M., Nienhaus, G.U.: Structural dynamics of myoglobin: ligand migration among protein cavities studied by Fourier transform infrared/temperature derivative spectroscopy. J. Biol. Chem. 277, 11636–11644 (2002)CrossRefGoogle Scholar
  63. 63.
    Nienhaus, K., Maes, E.M., Weichsel, A., Montfort, W.R., Nienhaus, G.U.: Structural dynamics controls nitric oxide affinity in nitrophorin 4. J. Biol. Chem. 279, 39401–39407 (2004)CrossRefGoogle Scholar
  64. 64.
    Phillips Jr., G.N., Teodoro, M.L., Li, T., Smith, B., Olson, J.S.: Bound CO is a molecular probe of electrostatic potential in the distal pocket of myoglobin. J. Phys. Chem. B 103, 8817–8829 (1999)CrossRefGoogle Scholar
  65. 65.
    Ray, G.B., Li, X.-Y., Ibers, J.A., Sessler, J.L., Spiro, G.S.: How far can proteins bend the FeCO unit? Distal polar and steric effects in heme proteins and models. J. Am. Chem. Soc. 116, 162–176 (1994)CrossRefGoogle Scholar
  66. 66.
    Vogel, K.M., Kozlowski, P.M., Zgierski, M.Z., Spiro, T.G.: Determinants of the FeXO (X = C, N, O) vibrational frequencies in heme adducts from experiment and density functional theory. J. Am. Chem. Soc. 121, 9915–9921 (1999)CrossRefGoogle Scholar
  67. 67.
    Müller, J.D., McMahon, B.H., Chien, E.Y., Sligar, S.G., Nienhaus, G.U.: Connection between the taxonomic substates and protonation of histidines 64 and 97 in carbonmonoxy myoglobin. Biophys. J. 77, 1036–1051 (1999)Google Scholar
  68. 68.
    Nienhaus, K., Nienhaus, G.U.: A spectroscopic study of structural heterogeneity and carbon monoxide binding in neuroglobin. J. Biol. Phys. 31, 417–432 (2005)CrossRefGoogle Scholar
  69. 69.
    Bredenbeck, J., Helbing, J., Nienhaus, K., Nienhaus, G.U., Hamm, P.: Multidimensional ultrafast spectroscopy special feature: Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 104, 14243–14248 (2007)CrossRefADSGoogle Scholar
  70. 70.
    Campbell, B.F., Chance, M.R., Friedman, J.M.: Linkage of functional and structural heterogeneity in proteins: dynamic hole burning in carboxymyoglobin. Science 238, 373–376 (1987)CrossRefADSGoogle Scholar
  71. 71.
    Ormos, P., Szaraz, S., Cupane, A., Nienhaus, G.U.: Structural factors controlling ligand binding to myoglobin: a kinetic hole-burning study. Proc. Natl. Acad. Sci. U. S. A. 95, 6762–6767 (1998)CrossRefADSGoogle Scholar
  72. 72.
    Brucker, E.A., Olson, J.S., Ikeda-Saito, M., Phillips Jr., G.N.: Nitric oxide myoglobin: crystal structure and analysis of ligand geometry. Proteins 30, 352–356 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute of BiophysicsUniversity of UlmUlmGermany
  2. 2.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations