Journal of Biological Physics

, Volume 32, Issue 5, pp 383–392 | Cite as

Exponential Distribution of Long Heart Beat Intervals During Atrial Fibrillation and Their Relevance for White Noise Behaviour in Power Spectrum

  • Thomas Hennig
  • Philipp Maass
  • Junichiro Hayano
  • Stefan Heinrichs
Research Paper

Abstract

The statistical properties of heart beat intervals of 130 long-term surface electrocardiogram recordings during atrial fibrillation (AF) are investigated. We find that the distribution of interbeat intervals exhibits a characteristic exponential tail, which is absent during sinus rhythm, as tested in a corresponding control study with 72 healthy persons. The rate γ of the exponential decay lies in the range 3–12 Hz and shows diurnal variations. It equals, up to statistical uncertainties, the level of the previously uncovered white noise part of the power spectrum, which is also characteristic for AF. The overall statistical features can be described by decomposing the intervals into two statistically independent times, where the first one is associated with a correlated process with 1/f noise characteristics, while the second one belongs to an uncorrelated process and is responsible for the exponential tail. It is suggested to use γ as a further parameter for a better classification of AF and for the medical diagnosis. The relevance of the findings with respect to a general understanding of AF is discussed.

Key words

atrial fibrillation RR interval distribution exponential tail power spectrum surface ECG time series analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nattel, S.: New ideas about atrial fibrillation 50 years on. Nature 415, 219–226 (2002)CrossRefADSGoogle Scholar
  2. 2.
    Wolf, P.A., Abbott, R.D., Kannel, W.B.: Atrial fibrillation as an independent risk factor for stroke: the Framingham study. Stroke 22, 983–988 (1991)Google Scholar
  3. 3.
    Benjamin, E.J., Wolf, P.A., D’Agostino, R.B., Silbershatz, H., Kannel, W.B., Levy, D.: Impact of atrial fibrillation on the risk of death: the Framingham heart study. Circulation 98, 946–952 (1998)Google Scholar
  4. 4.
    Krahn, A.D., Manfreda, J., Tate, R.D., Mathewson, F.A., Cuddy, T.E.: The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba follow-up study. Am. J. Med. 98, 476–484 (1995)CrossRefGoogle Scholar
  5. 5.
    Hoglund, C., Rosenhamer, G.: Echocardiographic left atrial dimension as a predictor of maintaining sinus rhythm after conversion of atrial fibrillation. Acta Med. Scand. 217, 411–415 (1985)CrossRefGoogle Scholar
  6. 6.
    Verhorst, P.M., Kamp, O., Welling, R.C., van Eenige, M.J., Visser, C.A.: Transesophageal echocardiographic predictors for maintenance of sinus rhythm after electrical cardioversion of atrial fibrillation. Am. J. Cardiol. 79, 1355–1359 (1997)CrossRefGoogle Scholar
  7. 7.
    Manabe, K., Oki, T., Tabata, T., Yamada, H., Fukuda, K., Abe, M., Iuchi, A., Fukuda, N., Ito, S.: Transesophageal echocardiographic prediction of initially successful electrical cardioversion of isolated atrial fibrillation. Effects of left atrial appendage function. Jpn. Heart J. 38, 487–495 (1997)Google Scholar
  8. 8.
    Holm, M., Pherson, St., Ingemansson, M., Sörnmo, L., Johansson, R., Sandhall, L., Sunemark, M., Smideberg, B., Olson, Ch., Olsson, S.B.: Non-invasive assessment of the atrial cycle length during atrial fibrillation in man: introducing, validating and illustrating a new ECG method. Cardiovasc. Res. 38, 69–81 (1998)CrossRefGoogle Scholar
  9. 9.
    Yamada, T., Fukunami, M., Shimonagata, T., Kumagai, K., Sanada, S., Ogita, H., Asano, Y., Hori, M., Hoki, N.: Dispersion of signal-averaged P wave duration on precordial body surface in patients with paroxysmal atrial fibrillation. Eur. Heart J. 20, 211–220 (1999)CrossRefGoogle Scholar
  10. 10.
    Raitt, M.H., Ingram, K.D., Thurman, S.M.: Signal-averaged P wave duration predicts early recurrence of atrial fibrillation after cardioversion. Pacing Clin. Electrophysiol. 23, 259–265 (2000)CrossRefGoogle Scholar
  11. 11.
    Peter, R.H., Morris Jr., J.J., McIntosh, H.D.: Relationship of fibrillatory waves and P waves in the electrocardiogram. Circulation 33, 599–606 (1966)Google Scholar
  12. 12.
    Wells Jr., J.L., Karp, R.B., Kouchoukos, N.T., MacLean, W.A., James, T.N., Waldo, A.L.: Characterization of atrial fibrillation in man: studies following open heart surgery. Pacing Clin. Electrophysiol. 1, 426–438 (1978)CrossRefGoogle Scholar
  13. 13.
    Konings, K.T., Kirchhof, C.J., Smeets, J.R., Wellens, H.J., Penn, O.C., Allessie, M.A.: High-density mapping of electrically induced atrial fibrillation in humans. Circulation 89, 1665–1680 (1994)Google Scholar
  14. 14.
    Asano, Y., Saito, J., Matsumoto, K., Kaneko, K., Yamamoto, T., Uchida, M.: On the mechanism of termination and perpetuation of atrial fibrillation. Am. J. Cardiol. 69, 1033–1038 (1992)CrossRefGoogle Scholar
  15. 15.
    Boahene, K.A., Klein, G.J., Yee, R., Sharma, A.D., Fujimura, O.: Termination of acute atrial fibrillation in the Wolff-Parkinson-White syndrome by procainamide and propafenone: importance of atrial fibrillatory cycle length. J. Am. Coll. Cardiol. 16, 1408–1414 (1990)CrossRefGoogle Scholar
  16. 16.
    Stambler, B.S., Wood, M.A., Ellenbogen, K.A.: Antiarrhythmic actions of intravenous ibutilide compared with procainamide during human atrial flutter and fibrillation: electrophysiological determinants of enhanced conversion efficacy. Circulation 96, 4298–4306 (1997)Google Scholar
  17. 17.
    Bollmann, A., Binias, K.-H., Toepffer, I., Molling, J., Geller, Ch., Klein, H.U.: Importance of left atrial diameter and atrial fibrillatory frequency for conversion of persistent atrial fibrillation with oral flecainide. Am. J. Cardiol. 90, 1011–1014 (2002)CrossRefGoogle Scholar
  18. 18.
    Moody, G., Mark, R.: A new method for detecting atrial fibrillation using RR-intervals. Comput. Cardiol. 10, 227–230 (1983)Google Scholar
  19. 19.
    Pinciroli, F., Castelli, A.: Pre-clinical experimentation of a quantitive synthesis of the local variability in the original R-R interval sequence in the presence of arrythmia. Automedica 6, 295–317 (1986)Google Scholar
  20. 20.
    Hayano, J., Yamasaki, F., Sakata, S., Okada, A., Mukai, S., Fujinami, T.: Spectral characteristics of ventricular response to atrial fibrillation. Am. J. Physiol. 273, H2811–H2816 (1997)Google Scholar
  21. 21.
    Ivanov, P.Ch., Rosenblum, M.G., Peng, C.-K., Mietus, J., Havlin, S., Stanley, H.E., Goldberger, A.L.: Scaling behaviour of heartbeat intervals obtained by wavelet-based time series analysis. Nature 383, 323–327 (1996)CrossRefADSGoogle Scholar
  22. 22.
    Bernaolo-Galván, P., Ivanov, P.Ch., Amaral, L.A.N., Stanley, H.E.: Scale invariance in the nonstationarity of human heart rate. Phys. Rev. Lett. 87, 168105 (2001)CrossRefADSGoogle Scholar
  23. 23.
    Heinrichs, S., Struzik, Z.R., Hayano, J., Yamamoto, Y.: Probing temporal correlation in ventricular interbeat intervals during atrial fibrillation with local continuous DFA. In: Proceedings of SPIE Second International Symposium on Fluctuations and Noise, Maspalomas, Gran Canaria, Spain, vol. 5467, pp. 404–410 (2004)Google Scholar
  24. 24.
    Pinciroli, F., Rossi, R., Valenca, P.: PAFHPI: self-monitoring of paroxysmal atrial fibrillation episodes in ambulatory patients. In: Proceedings Computers in Cardiology, pp. 503–506. IEEE Computer Society Press, London (1993)Google Scholar
  25. 25.
    Honerkamp, J.: Stochastic Dynamical Systems, Ch. 3.2.5. VCH, Cambridge (1994)Google Scholar
  26. 26.
    Rokas, St., Gaitanidou, St., Chatzidou, S., Pamboucas, C., Achtipis, D., Stamatelopoulos, St.: Atrioventricular node modification in patients with chronic atrial fibrillation – role of morphology of RR interval variation. Circulation 103, 2942–2948 (2001)Google Scholar
  27. 27.
    Hatzido, S.N., Gaitanidou, Ch., Paboukas, K.A., Vogiatzis, St.D., Antonellis, I., Rokas, St.G.: Modification of the atrioventricular node in patients with chronic atrial fibrillation. – The role of RR interval distribution pattern. Hell. J. Cardiol. 43, 116–126 (2002)Google Scholar
  28. 28.
    Weismuller, P., Kratz, C., Brandts, B., Kattenbeck, K., Trappe, H.J., Ranke, C.: AV nodal pathways in the R-R interval histogram of the 24-hour monitoring ECG in patients with atrial fibrillation. Ann. Noninvasive Electrocardiol. 6, 285–289 (2001)CrossRefGoogle Scholar
  29. 29.
    Meurling, C.J., Waktare, J.E.P., Holmqvist, I., Hedman, A., Camm, A.J., Olsson, S.B., Malik, M.: Diurnal variations of the dominant cycle length of chronic atrial fibrillation. Am. J. Physiol. Heart Circ. Physiol. 280, H401–H406 (2001)Google Scholar
  30. 30.
    Ivanov, P.Ch., Rosenblum, M.G., Peng, C.-K., Mietus, J., Havlin, S., Stanley, H.E., Goldberger, A.L.: Scaling and universality in heart rate variability distributions. Physica A. 249, 587–593 (1998)CrossRefGoogle Scholar
  31. 31.
    Gaita, F., Riccardi, R., Calo, L., Scaglione, M., Garberoglio, L., Antolini, R., Kirchner, M., Lamberti, F., Richiardi, E.: Atrial mapping and radiofrequency catheter ablation in patients with idiopathic atrial fibrillation. Electrophysiological findings and ablation results. Circulation 97, 2136–2145 (1998)Google Scholar
  32. 32.
    Hobbs, W.J., Fynn, S., Todd, D.M., Wolfson, P., Galloway, M., Garratt, C.J.: Reversal of atrial electrical remodeling after cardioversion of persistent atrial fibrillation in humans. Circulation 101, 1145–1151 (2000)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Thomas Hennig
    • 1
  • Philipp Maass
    • 1
  • Junichiro Hayano
    • 2
  • Stefan Heinrichs
    • 3
  1. 1.Institut für PhysikTechnische Universität IlmenauIlmenauGermany
  2. 2.Core LaboratoryNagoya City University Graduate School of Medical SciencesNagoyaJapan
  3. 3.Fachbereich PhysikUniversität KonstanzKonstanzGermany

Personalised recommendations