Journal of Biological Physics

, Volume 32, Issue 3–4, pp 355–368 | Cite as

The Virtual Ventricular Wall: A Tool for Exploring Cardiac Propagation and Arrhythmogenesis

  • Arun V. Holden
  • Oleg V. Aslanidi
  • Alan P. Benson
  • Richard H. Clayton
  • Graeme Halley
  • Pan Li
  • Wing Chiu Tong
Research Paper


Methods for the experimental and clinical investigation of cardiac arrhythmias are limited to inferring propagation within the myocardium, from surface measurements, or from electrodes at a few sites within the cardiac wall. Biophysically and anatomically detailed computational models of cardiac tissues offer a powerful way for studying the electrical propagation processes and arrhythmias within the virtual heart. We use virtual tissues to study and visualise the effects of patho- and physiological conditions, and pharmacological interventions on transmural propagation in the virtual ventricular walls. Class III drug actions are quantitatively explained by changes induced in the transmural dispersion of action potential duration. We illustrate the automated construction of a virtual anisotropic ventricle from Diffusion Tensor MRI for individual hearts, and use it to explore mechanisms leading to ventricular fibrillation. The virtual ventricular wall provides an effective tool for exploring, evaluating and visualising processes during the initiation and maintenance of ventricular arrhythmias.

Key words

cardiac arrhythmias Diffusion Tensor MRI Ventricular fibrillation (VF) ventricular wall virtual tissues 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li, D., Li, C.Y., Yong, A.C., Kilpatrick, D.: Source of electrocardiographic ST changes in subendocardial ischemia. Circ. Res. 82, 957–970 (1998)Google Scholar
  2. 2.
    Gray, R.A., Pertsov, A.M., Jalife, J.: Spatial and temporal organisation during cardiac fibrillation. Nature 392, 75–78 (1998)CrossRefADSGoogle Scholar
  3. 3.
    Valderrabano, M., Lee, M.H., Ohara, T., Lai, A.C., Fishbein, M.C., Lin, S.F., Karagueuzian, H.S., Chen, P.S.: Dynamics of intramural and transmural reentry during ventricular fibrillation in isolated swine ventricles. Circ. Res. 88, 839–848 (2001)CrossRefGoogle Scholar
  4. 4.
    Gray, R.A., Jalife, J., Panfilov, A.V., Baxter, W.T., Cabo, C., Davidenko, J. M., Pertsov, A.M.: Mechanisms of Cardiac Fibrillation. Science 270, 1222–1223 (1995)CrossRefADSGoogle Scholar
  5. 5.
    Panfilov, A., Pertsov, A.M.: Ventricular fibrillation: evolution of the multiple-wavelet hypothesis. Philos. Trans. Royal Soc. Lond. A - Math. Phys. Eng. Sci. 359, 1315–1325 (2001)CrossRefADSGoogle Scholar
  6. 6.
    Zaitsev, V., Berenfeld, O., Mironov, S.F., Jalife, J., Pertsov, A.M.: Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circ. Res. 86, 408–417 (2000)Google Scholar
  7. 7.
    Garfinkel, A., Kim, Y.H., Voroshilovsky, O., Qu, Z.L., Kil, J.R., Lee, M.H., Karagueuzian, H.S., Weiss, J.N., Chen, P.S.: Preventing ventricular fibrillation by flattening cardiac restitution. Proc. Natl. Acad. Sci. U S A 97, 6061–6066 (2000)CrossRefADSGoogle Scholar
  8. 8.
    Fenton, F.H., Karma, A.: Vortex dynamics in three-dimensional continuous myocardium with fibre rotation: Filament instability and fibrillation. Chaos 8, 20–47 (1998)zbMATHCrossRefADSGoogle Scholar
  9. 9.
    Biktashev, V.N., Holden, A.V., Zhang, H.: Tension of organizing filaments of scroll waves. Philos. Trans. R. Soc. Lond. A 347, 611–630 (1994)zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Janse, M.J., Van-Cappelle, F.J.L., Morsink, H., Kleber, A.G., Wilms-Schopman, F., Cardinal, R., D’Alnoncourt, C.N., Durrer, D.: Flow of “injury” currents and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischaemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circ. Res. 47, 151–165 (1980)Google Scholar
  11. 11.
    Ideker, R.E., Klein, G.J., Harrison, L., Smith, W.M., Kasell, J., Reimer, K.A., Wallace, A.G., Gallagher, J.J.: The transition to ventricular fibrillation induced by reperfusion after acute regional ischaemia in the dog: A period of organised epicardial activation. Circulation 63, 1371–1379 (1981)Google Scholar
  12. 12.
    Biktashev, V.N., Holden, A.V., Mironov, S.F., Pertsov, A.M., Zaitsev, A.V.: Three-dimensional aspects of re-entry in experimental and numerical models of ventricular fibrillation. Int. J. Bifurc. & Chaos 9, 695–704 (1999)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kay, M.W., Amison, P.M., Rogers, J.M.: Three-dimensional surface reconstruction and panoramic optical mapping of large hearts. IEEE Trans. Biomed. Eng. 51, 1219–1229 (2004)CrossRefGoogle Scholar
  14. 14.
    Rogers, J.M.: Combined phase singularity and wavefront analysis for optical maps of ventricular fibrillation. IEEE Trans. Biomed. Eng. 51, 56–65 (2004)CrossRefGoogle Scholar
  15. 15.
    Clayton, R.H., Holden, A.V.: Filament behavior in a computational model of ventricular fibrillation in the canine heart. IEEE Trans. Biomed. Eng. 51, 28–34 (2004)CrossRefGoogle Scholar
  16. 16.
    Clayton, R.H., Holden, A.V.: Dispersion of cardiac action potential duration and the initiation of re-entry: A computational study. Biomed. Eng. Online 4, 11–16 (2005)CrossRefGoogle Scholar
  17. 17.
    Xie, F., Qu, Z., Yang, J., Baher, A., Weiss, J.N., Garfinkel, A.: A simulation study of the effects of cardiac anatomy in ventricular fibrillation. J. Clin. Invest. 113,686–693 (2004)Google Scholar
  18. 18.
    Luo, C.H., Rudy, Y.: A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ. Res. 74, 1071–1096 (1994)Google Scholar
  19. 19.
    Noble, D., Rudy, Y.: Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation. Philos. Trans. Royal Soc. Lond. A - Math. Phys. Eng. Sci. 359, 1127–1142 (2001)CrossRefADSGoogle Scholar
  20. 20.
    Boyett, M.R., Jue Li, Inada, S., Dobrzynski, H., Schneider, J.E., Holden, A.V., Zhang, H.: Imaging the heart: computer 3-dimensional anatomic models of the heart. J. Electrocardiol. 38, 113–120 (2005)CrossRefGoogle Scholar
  21. 21.
    LeGrice, I.J., Hunter, P.J., Smaill, B.H.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol., Heart Circ. Physiol. 269, H571–H582 (1997)Google Scholar
  22. 22.
    Nielson, P.M.F., LeGrice, I.J., Smaill, B.H., Hunter, P.J.: Mathematical model of the geometry and fibrous structure of the heart. Am. J. Physiol., Heart Circ. Physiol. 260, H1365–H1378 (1991)Google Scholar
  23. 23.
    Kohl, P., Noble, D., Winslow, R.L., Hunter, P.J.: Computational modelling of biological systems: tools and visions. Philos. Trans. R. Soc., A 358, 579–610 (2000)zbMATHCrossRefADSGoogle Scholar
  24. 24.
    Aslanidi, O.V., Clayton, R.H., Lambert, J.L., Holden, A.V.: Dynamical and cellular electrophysiological mechanisms of ECG changes during ischaemia. J. Theor. Biol. 237, 369–381 (2005)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Jack, J.J.B., Noble, D., Tsien, R.W.: Electric Current Flow in Excitable Cells. Clarendon, Oxford (1975)Google Scholar
  26. 26.
    Panfilov, A.V., Holden, A.V.: Computational Biology of the Heart. Wiley, Chichester (1997)zbMATHGoogle Scholar
  27. 27.
    Antzelevitch, C., Yan, G.X., Shimizu, W.: Transmural dispersion of repolarization and arrhythmogenicity: the Brugada syndrome versus the long QT syndrome. J. Electrocardiol. 32, 158–165 (1999)CrossRefGoogle Scholar
  28. 28.
    Aslanidi, O.V., Bailey, A., Biktashev, V.N., Holden, A.V.: Enhanced self-termination of re-entrant arrhythmias as a pharmacological strategy for antiarrhythmic action. Chaos 12, 843–851 (2002)CrossRefADSGoogle Scholar
  29. 29.
    Viswanathan, P.C., Rudy, Y.: Cellular arrhythmogenic effects of congenital and acquired long-QT syndrome in the heterogeneous myocardium. Circulation 101, 1192–1198 (2000)Google Scholar
  30. 30.
    Gima, K., Rudy, Y.: Ionic current basis of electrocardiographic waveforms – a model study. Circ. Res. 90, 889–896 (2002)CrossRefGoogle Scholar
  31. 31.
    Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B. 30, 201–206 (1994)Google Scholar
  32. 32.
    Hsu, E.W., Muzikant, A.L., Matulevicius, S.A., Penland, R.C., Henriquez, S.C.: Magnetic resonance myocardial fiber-orienation mapping with direct histological correlation. Am. J. Physiol., Heart Circ. Physiol 274, H1627–H1634 (1998)Google Scholar
  33. 33.
    Holmes, A.A., Scollan, D.F., Winslow, R.L.: Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium. J. Magn. Reson. 44, 157–161 (2000)CrossRefGoogle Scholar
  34. 34.
    Scollan, D.F., Holmes, A., Winslow, R.L., Forder, J.: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am. J. Physiol., Heart Circ. Physiol. 275, H2308–H2318 (1998)Google Scholar
  35. 35.
    Sicouri, S., Moro, S., Litovsky, S., Elizari, M.V., Antzelevitch, C.: Chronic amiodarone reduces transmural dispersion of repolarization in the canine heart. J. Cardiovasc. Electrophysiol. 8, 1269–1279 (1997)CrossRefGoogle Scholar
  36. 36.
    Akar, F.G., Yan, G.-X., Antzelevitch, C., Rosenbaum, D.S.: Unique topographical distribution of M cells underlies re-entrant mechanism of Torsade de Pointes in the Long-QT syndrome. Circulation 105, 1247–1253 (2002)CrossRefGoogle Scholar
  37. 37.
    Drouin, E., Lande, G., Charpentier, F.: Amiodarone reduces transmural heterogeneity of repolarization in the human heart. J. Am. Coll. Cardiol. 32, 1063–1067 (1998)CrossRefGoogle Scholar
  38. 38.
    Biktashev, V.N., Holden, A.V.: Characterization of patterned irregularity in locally interacting, spatially extended systems: Ventricular fibrillation. Chaos 11, 653–664 (2001)zbMATHCrossRefADSGoogle Scholar
  39. 39.
    Witkowski, F.X., Leon, L.J., Penkoske, P.A., Clark, R.B., Spano, M.L., Ditto, W.L., Giles, W.R.: A method for visualization of ventricular fibrillation: Design of a cooled fiber optically coupled image intensified CCD data acquisition system incorporating wavelet shrinkage based adaptive filtering. Chaos 8, 94–102 (1998)CrossRefADSGoogle Scholar
  40. 40.
    Panfilov, A.: Three-dimensional organization of electrical turbulence in the heart. Phys. Rev. E 59, R6251–R6254 (1999)CrossRefADSGoogle Scholar
  41. 41.
    Weiss, J.N., Chen., P.-S., Qu, Z., Karagueuzian, H.S., Garfinkel, A.: Ventricular fibrillation – how do we stop the waves from breaking? Cir. Res. 87, 1103–1107 (2000)Google Scholar
  42. 42.
    Huikuri, H.V., Castellanos, A., Myerburg, R.J.: Sudden death due to cardiac arrhythmias. N. Engl. J. Med. 345, 1473–1482 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Arun V. Holden
    • 1
  • Oleg V. Aslanidi
    • 1
  • Alan P. Benson
    • 1
  • Richard H. Clayton
    • 2
  • Graeme Halley
    • 1
  • Pan Li
    • 1
  • Wing Chiu Tong
    • 1
  1. 1.Computational Biology Laboratory, Institute of Membrane and Systems BiologyUniversity of LeedsLeedsUK
  2. 2.Department of Computer ScienceUniversity of SheffieldSheffieldUK

Personalised recommendations