Journal of Biological Physics

, Volume 32, Issue 2, pp 129–144 | Cite as

Differences in Membrane Properties in Simulated Cases of Demyelinating Neuropathies: Internodal Focal Demyelinations with Conduction Block

  • D. I. Stephanova
  • M. S. Daskalova
  • A. S. Alexandrov
Article

Abstract

The aim of this study is to investigate the membrane properties (potentials and axonal excitability indices) in the case of myelin wrap reduction (96%) in one, two and three consecutive internodes along the length of human motor nerve fibre. The internodally focally demyelinated cases (termed as IFD1, IFD2 and IFD3, respectively, with one, two and three demyelinated internodes are simulated using our previous double cable model of the fibre. The progressively greater increase of focal loss of myelin lamellae blocks the invasion of the intracellular potentials into the demyelinated zones. For all investigated cases, the radial decline of the extracellular potential amplitudes increases with the increase of the radial distance and demyelination, whereas the electrotonic potentials show a decrease in the slow part of the depolarizing and hyperpolarizing responses. The time constants are shorter and the rheobases higher for the IFD2 and IFD3 cases than for the normal case. In the recovery cycles, the same cases have less refractoriness, greater supernormality and less late subnormality than the normal case. The simulated membrane abnormalities can be observed in vivo in patients with demyelinating forms of Guillain-Barré syndrome. The study provides new information about the pathophysiology of acquired demyelinating neuropathies.

Keywords

acquired demyelinating neuropathies computational neuroscience potentials strength-duration properties recovery cycles 

References

  1. 1.
    Birouk, N., Gouider, R., Le Guern, E., Gugenheim, M., Tardieu, S., Maisonobe, T., Le Forestier, N., Agid, Y., Brice, A. and Bouche, P.: Charcot-Marie-Tooth Disease Type 1A with 17p11.2 Duplication. Clinical and Electrophysiological Phenotype Study and Factors Influencing Disease Severity in 119 Cases, Brain 120 (1997), 813–823.CrossRefGoogle Scholar
  2. 2.
    Dyck, P.J., Chance, P., Lebo, R. and Camey, A.J.: Hereditary Motor and Sensory Neuropathies. In: Dyck P.J., Thomas, P.K., Griffin, J.W., Low P.A., Poduslo, J.F. (eds.) Peripheral Neuropathy, 3rd edn. Philadelphia: W.B. Saunders, 1993, pp.1094–1136.Google Scholar
  3. 3.
    Choudhury, D. and Arora: Axonal Guillain-Barré Syndrome: A Critical Review, Acta Neurol. Scan. 103 (2001), 267–277.CrossRefGoogle Scholar
  4. 4.
    Feasby, T.E., Gilbert, J.J., Brown, W.F., Bolton, C.F., Hahn, A.F., Koopman, W.F. and Zochodne, D.W.: An Acute Axonal form of Guillain-Barré Polyneuropathy, Brain 109 (1986), 1115–1126.CrossRefGoogle Scholar
  5. 5.
    Griffin, J.W., Li, C.Y., Ho, T.W., Xue, P., Macko, C., Gao, C.Y., Yang, C., Tian, M., Mishu, B. and Cornblath, D.R.: Guillain-Barré Syndrome in Northern China. The Spectrum of Neuropathological Changes in Clinically Defined Cases, Brain 118 (1995), 575–595.CrossRefGoogle Scholar
  6. 6.
    Kaji, R.: Physiology of Conduction Block in Multifocal Motor Neurophathy and Other Demyelinating Neuropathies, Muscle Nerve 27 (2003), 285–296.CrossRefGoogle Scholar
  7. 7.
    Priori, A., Bossi, B., Ardolino, G., Bertolasi, L., Carpo, M., Nobile-Orazio, E. and Barbieri, S.: Pathophysiological Heterogeneity of Conduction Blocks in Multifocal Motor Neuropathy, Brain 128 (2005), 1642–1648.CrossRefGoogle Scholar
  8. 8.
    Kiernan, M.C., Guglielmi, J.M., Kaji, R., Murray, N. M.F. and Bostock, H.: Evidence for Axonal Membrane Hyperpolarization in Multifocal Motor Neuropathy with Conduction Block, Brain 125 (2002), 664–675.CrossRefGoogle Scholar
  9. 9.
    Kuwabara, S., Bostock, H., Ogawara, K., Sung, J.Y., Kanai, K., Mori, M., Hattori, T. and Burke, D.: The Refractory Period of Transmission is Impaired in Axonal Guillain-Barré Syndrome. Muscle Nerve 28 (2003), 683–689.CrossRefGoogle Scholar
  10. 10.
    Kuwabara, S., Ogawara, K., Sung, J.Y., Mori, M., Kanai, K., Hattori, T., Yuki, N., Lin, C.S., Burke, D. and Bostock, H.: Differences in Membrane Properties of Axonal and Demyelinating Guillain-Barré Syndromes, Ann. Neurol. 52 (2002), 180–187.CrossRefGoogle Scholar
  11. 11.
    Nodera, H., Bostock, H., Kuwabara, S., Sakamoto, T., Asanuma, K., Sung, J.Y., Ogawara, K., Hattori, N., Hirayama, M., Sobue, G. and Kaji, R.: Nerve Excitability Properties in Charcot-Marie-Tooth Disease Type A1, Brain 127 (2004), 203–211.CrossRefGoogle Scholar
  12. 12.
    Sung, J.Y., Kuwabara, S., Kaji, R., Ogawara, K., Mori, M., Kanai, K., Nodera, H., Hattori, T. and Bostock, H.: Threshold Electrotonus in Chronic Inflammatory Demyelinating Polyneuropathy: Correlation with Clinical Profiles, Muscle Nerve 29 (2004), 28–37.CrossRefGoogle Scholar
  13. 13.
    Stephanova, D.I. and Daskalova, M.: Extracellular Potentials of Human Motor Myelinated Nerve Fibers in Normal Case and in Amyotrophic Lateral Sclerosis, Electromyogr. Clin. Neurophysiol. 42 (2002), 443–448.Google Scholar
  14. 14.
    Stephanova, D.I. and Daskalova, M.: Differences in Potentials and Excitability Properties in Simulated Cases of Demyelinating Neuropathies. Part II. Paranodal demyelination. Clin. Neurophysiol, 116 (2005), 1159–1166.CrossRefGoogle Scholar
  15. 15.
    Stephanova, D.I. and Daskalova, M.: Differences in Potentials and Excitability Properties in Simulated Cases of Demyelinating Neuropathies. Part III. Paranodal Internodal Demyelination, Clin. Neurophysiol. 116 (2005), 2334–2341.CrossRefGoogle Scholar
  16. 16.
    Stephanova, D.I., Daskalova, M. and Alexandrov, A.S.: Differences in Potentials and Excitability Properties in Simulated Cases of Demyelinating Neuropathies. Part I, Clin. Neurophysiol. 116 (2005),1153–1158.CrossRefGoogle Scholar
  17. 17.
    Stephanova, D.I., Daskalova, M. and Alexandrov, A.S.: Differences in Membrane Properties in Simulated Cases of Demyelinating Neuropathies: Internodal Focal Demyelinations Without Conduction Block, J. Biol. Phys. (2006), DOI: 10.1007/s10867-006-9001-9.Google Scholar
  18. 18.
    Stephanova, D.I. and Bostock, H.: A Distributed-Parameter Model of the Myelinated Human Motor Nerve Fibre: Temporal and Spatial Distributions of Action Potentials and Ionic Currents. Biol. Cybern. 73 (1995), 275–280.Google Scholar
  19. 19.
    Stephanova, D.I. and Bostock, H.: A Distributed-Parameter Model of the Myelinated Human Motor Nerve Fibre: Temporal and Spatial Distributions of Electrotonic Potentials and Ionic Currents, Biol. Cybern, 74 (1996), 543–547.Google Scholar
  20. 20.
    Stephanova, D.I. and Mileva, K.: Different Effects of Blocked Potassium Channels on Action Potentials, Accommodations, Adaptation and Anode Break Excitation in Human Motor and Sensory Myelinated Nerve Fibres: Computer Simulations, Biol. Cybern. 83 (2000), 161–167.Google Scholar
  21. 21.
    Bostock, H., Baker, M. and Reid, G.: Changes in Excitability of Human Motor Axons Underlying Post-Ischaemic Fasciculations: Evidence for Two Stable States, J. Physiol. (Lond.) 441 (1991), 537–557.Google Scholar
  22. 22.
    Scholz, A., Reid, G., Vogel, W. and Bostock H.: Ion Channels in Human Axons, J. Neurophysiol, 70 (1993), 1274–1279.Google Scholar
  23. 23.
    Schwarz, J.R., Reid, G. and Bostock, H.: Action Potentials and Membrane Currents in the Human Node of Ranvier, Pflügers Arch. 430 (1995), 283–292.CrossRefGoogle Scholar
  24. 24.
    Chiu, S.Y., Ritchie, J.M., Rogart, R. B. and Stagg, D.: A Quantitative Description of Membrane Current in Rabbit Myelinated Nerve, J. Physiol. (Lond.) 292 (1979), 149–166.Google Scholar
  25. 25.
    Brismar T.: Potential Clamp Analysis of Membrane Currents in Rat Myelinated Nerve Fibres, J. Physiol. (Lond) 298 (1980), 171–184.Google Scholar
  26. 26.
    Neumcke, B. and Stämpftly, R.: Sodium Currents and Sodium Current Fluctuation in Rat Myelinated Nerve Fibres. J. Physiol. (Lond) 329 (1982), 163–184.Google Scholar
  27. 27.
    Schwarz, J.R. and Eikhof, G.: Na Currents and Action Potentials in Rat Myelinated Nerve Fibres at 20 and 37 C, Pflügers Arch. 409 (1987), 569–577.CrossRefGoogle Scholar
  28. 28.
    Stephanova, D.I., Trayanova, N., Gydikov, A. and Kossev, A.: Extracellular Potentials of a Single Myelinated Nerve Fiber in An Unbounded Volume Conductor, Biol. Cybern. 61 (1989), 205–210.CrossRefGoogle Scholar
  29. 29.
    Bostock, H. and Rothwell, J.C.: Latent Addition in Motor and Sensory Fibres of Human Peripheral Nerve, J. Physiol. (Lond) 498 (1997), 277–294.Google Scholar
  30. 30.
    Dimitrov, A.G.: Internodal Sodium Channels Ensure Active Processes Under Myelin Manifesting in Depolarizing Afterpotentials. J. Theor. Biol 235 (2005), 451–462.Google Scholar
  31. 31.
    Halter, J. and Clark, J.: A Distributed-Parameter Model of the Myelinated Nerve Fibre, J. Theor. Biol. 148 (1991), 345–382.CrossRefGoogle Scholar
  32. 32.
    Stephanova, D. and Kossev, A.: Action Potentials and Ionic Currents Through Internodally Demyelinated Human Motor Nerve Fibres: I. Computer Simulations, Comp. Rend. l'Acad. Bulg. Sci. 50(3) (1997), 107–110.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • D. I. Stephanova
    • 1
  • M. S. Daskalova
    • 1
  • A. S. Alexandrov
    • 1
  1. 1.Institute of BiophysicsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations