Journal of Biological Physics

, Volume 32, Issue 2, pp 117–128 | Cite as

Analysis of Non-stationary Data for Heart-rate Fluctuations in Terms of Drift and Diffusion Coefficients

  • F. Ghasemi
  • Muhammad Sahimi
  • J. Peinke
  • M. Reza Rahimi Tabar


We describe a method for analyzing the stochasticity in non-stationary data for the beat-to-beat fluctuations in the heart rates of healthy subjects, as well as those with congestive heart failure. The method analyzes the return time series of the data as a Markov process, and computes the Markov time scale, i.e., the time scale over which the data are a Markov process. We also construct an effective stochastic continuum equation for the return series. We show that the drift and diffusion coefficients, as well as the amplitude of the return time series for healthy subjects are distinct from those with CHF. Thus, the method may potentially provide a diagnostic tool for distinguishing healthy subjects from those with congestive heart failure, as it can distinguish small differences between the data for the two classes of subjects in terms of well-defined and physically-motivated quantities.


non-stationary time series heart interbeat Fokker-Planck equation drift and diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peng, C.-K., Mietus, J., Hausdorff, J.M., Havlin, S., Stanley, H.E., and Goldberger, A.L.: Phys. Rev. Lett. 70 (1993), 1343.Google Scholar
  2. 2.
    Bunde, A., Havlin, S., Kantelhardt, J.W., Penzel, T., Peter, J.-H., and Voigt, K.: Phys. Rev. Lett. 85 (2000), 3736.Google Scholar
  3. 3.
    Bernaola-Galvan, P., Ivanov, P. Ch., Amaral, L.N., and Stanley, H.E.: Phys. Rev. Lett. 87 (2001), 168105.Google Scholar
  4. 4.
    Schulte-Frohlinde, V., Ashkenanzy, Y., Ivanov, P. Ch., Glass, L., Goldberger, A.L., and Stanley, H.E.: Phys. Rev. Lett. 87 (2001), 068104.Google Scholar
  5. 5.
    Ashkenazy, Y., Ivanov, P. Ch., Havlin, S., Peng, C-K., Goldberger, A.L., and Stanley, H.E.: Phys. Rev. Lett. 86, (2001) 1900.Google Scholar
  6. 6.
    Kuusela, T.: Phys. Rev. E 69 (2004), 031916.Google Scholar
  7. 7.
    Torquato, S., Random Heterogeneous Materials, Microstructure and Macroscopic Properties (Springer, New York, 2002); C.L.Y. Yeong and S. Torquato: Phys. Rev. E 57, 495 (1998); ibid. 58, 224, (1998).Google Scholar
  8. 8.
    Sahimi, M.: Heterogeneous Materials, Volume II (Springer, New York, 2003).Google Scholar
  9. 9.
    Jafari, G.R., Fazlei, S.M., Ghasemi, F., Vaez Allaei, S.M., Reza Rahimi Tabar, M., Iraji Zad, A., and Kavei, G.: Phys. Rev. Lett. 91 (2003), 226101.Google Scholar
  10. 10.
    Reza Rahimi Tabar, M., Ghasemi, F., Peinke, J., Friedrich, R., Kaviani, K., Taghavi, F., Sadeghi, S., Bijani, G., and Sahimi, M.: Computing In Science and Engeering 86 (2006).Google Scholar
  11. 11.
    Ghasemi, F., Peinke, J., Sahimi, M., and Rahimi Tabar, M.R.: Europhys. J.B 47(29) (2005), 411415.Google Scholar
  12. 12.
    Ghasemi, F., Peinke, J., Reza Rahimi Tabar M., and Sahimi, M., to be published in Intl J. Modern Physics C, (2005).Google Scholar
  13. 13.
    Friedrich, R., and Peinke, J.: Phys. Rev. Lett. 78 (1997), 863.Google Scholar
  14. 14.
    Davoudi, J., and Reza Rahimi Tabar, M.: Phys. Rev. Lett. 82 (1999), 1680.Google Scholar
  15. 15.
    Friedrich, R., Peinke, J., and Renner, C.: Phys. Rev. Lett. 84 (2000), 5224.Google Scholar
  16. 16.
    Friedrich, R., Galla, Th., Naert, A., Peinke J., and Schimmel, Th., In: Parisi, J., Muller, S.C., and Zimmerman, W. (eds.), A Perspective Look at Nonlinear Media, Lecture Notes in Physics, 503 (Springer, Berlin, 1997), p. 313; R. Friedrich, S. Siegert, J. Peinke, et al.: Phys. Lett. A 271 (2000), 217.Google Scholar
  17. 17.
    Siefert, M., Kittel, A., Friedrich, R., and Peinke, J.: Europhys. Lett. 61, (2003) 466; S. Kriso, et al., Phys. Lett. A 299, (2002) 287; S. Siegert, R. Friedrich, and J. Peinke, Phys. Lett. A 243 (1998), 275.Google Scholar
  18. 18.
    Risken, H.: The Fokker-Planck Equation (Springer, Berlin, 1984).Google Scholar
  19. 19.
    Wolf, M.M., Varigos, G.A., Hunt, D., and Sloman, J.G.: Med. J. Aust. 2 (1978), 52.Google Scholar
  20. 20.
    Ivanov, P. Ch., Bunde, A., Amaral, L.A.N., Havlin, S., Fritsch-Yelle, J., Baevsky, R.M., Stanley, H.E., and Goldberger, A.L.: Europhys. Lett. 48 (1999), 594.Google Scholar
  21. 21.
    Ivanov, P. Ch., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Struzik, Z., and Stanley, H.E.: Nature (London) 399 (1999), 461.Google Scholar
  22. 22.
    Peng, C.-K., Havlin, S., Stanley, H.E., and Goldberger, A.L.: Chaos 5 (1995), 82.Google Scholar
  23. 23.
    Peng, C.-K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., and Goldberger, A.L.: Phys. Rev. E 49 (1994), 1685.Google Scholar
  24. 24.
    Ivanov, P. Ch., Amaral, L.A.N., Goldberger, A.L., and Stanley, H.E.: Europhys. Lett. 43 (1998), 363.Google Scholar
  25. 25.
    Turcott, R.G., and Teich, M.C.: Fractal Character of the Electrocardiogram: Distinguishing Heart-failure and Normal Patients Ann. Biomed. Eng. 24 (1996), 269.Google Scholar
  26. 26.
    Lipsitz, L.A., Mietus, J., Moody, G.B., and Goldberger, A.L.: Circulation 81 (1990), 1803.Google Scholar
  27. 27.
    Kaplan, D.T., et al.: Biophys. J. 59 (1991), 945.Google Scholar
  28. 28.
    Iyengar, N., et al.: Am. J. Physiol. 271 (1996), R1078.Google Scholar
  29. 29.
    Peng, C.-K., Hausdorff, J.M., and Goldberger, A.L.: In: Walleczek, J. (ed.) Nonlinear Dynamics, Self-Organization, and Biomedicine, Cambridge University Press, Cambridge (1999).Google Scholar
  30. 30.
    Lin, D.C.: Discrete Scale Invariance in the Cascade Heart Rate Variability of Healthy Humans, Int. J. Mod. Phys. C 16 (2005), 465.Google Scholar
  31. 31.
    Novikov, E.A.: Dokl. Akad. Nauk USSR 168 (1966), 1279.Google Scholar
  32. 32.
    Sornette, D.: Phys. Rep. 297 (1998), 239.Google Scholar
  33. 33.
    Johansen, A., Sornette, D., and Ledoit, O.: J. Risk 1, (1999), 5.Google Scholar
  34. 34.
    Zhou, W.-X., and Sornette, D.: Physica D 165 (2002), 94.Google Scholar
  35. 35.
    Sornette D., and Sammis, C.G.: J. Phys. I France 5 (1995), 607.Google Scholar
  36. 36.
    Stauffer D., and Sornette, D.: Physica A 252 (1998), 21.Google Scholar
  37. 37.
    Saadatfar M., and Sahimi, M.: Phys. Rev. E. 65 (2002), 036116.Google Scholar
  38. 38.
    Sahimi M., and Arbabi, S.: Phys. Rev. Lett. 77 (1996), 3689.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • F. Ghasemi
    • 1
  • Muhammad Sahimi
    • 2
  • J. Peinke
    • 3
  • M. Reza Rahimi Tabar
    • 4
    • 5
  1. 1.Institute for Studies in Theoretical Physics and MathematicsTehranIran
  2. 2.Department of Chemical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
  3. 3.Carl von Ossietzky UniversityInstitute of PhysicsOldenburgGermany
  4. 4.CNRS UMR 6202Observatoire de la Côte d’AzurNice Cedex 4France
  5. 5.Department of PhysicsSharif University of TechnologyTehranIran

Personalised recommendations